-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils_mlp_spsa_weighted_sum.py
491 lines (371 loc) · 17.2 KB
/
utils_mlp_spsa_weighted_sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import os
import os.path
import datetime
import time
import numpy as np
import torch.nn as nn
from scipy import*
from copy import*
import matplotlib.pyplot as plt
import sys
import pickle
import pandas as pd
import shutil
from tqdm import tqdm
import torch
def initDataframe_pretraining(path, dataframe_to_init = 'pre_training.csv'):
'''
Initialize a dataframe with Pandas so that the pre-training loss is stored
'''
if os.name != 'posix':
prefix = '\\'
else:
prefix = '/'
if os.path.isfile(path + dataframe_to_init):
dataframe = pd.read_csv(path + dataframe_to_init, sep = ',', index_col = 0)
else:
columns_header = ['Pre-training loss' ]
dataframe = pd.DataFrame({},columns = columns_header)
dataframe.to_csv(path + prefix + dataframe_to_init)
return dataframe
def updateDataframe_pretraining(BASE_PATH, pretraining_loss, dataframe_to_update = 'pre_training.csv'):
'''
Add data to the pandas dataframe
'''
if os.name != 'posix':
prefix = '\\'
else:
prefix = '/'
data = [pretraining_loss]
dataframe = pd.read_csv(BASE_PATH + prefix + dataframe_to_update, sep = ',', index_col = 0) #load old dataframe
new_data = pd.DataFrame([data],index=[1],columns=dataframe.columns) #create new one
dataframe = pd.concat([dataframe, new_data], axis=0) #concat both
dataframe.to_csv(BASE_PATH + prefix + dataframe_to_update)
return dataframe
def save_Dataframe_classifier(path, data, dataframe_to_init = 'classifier.csv'):
'''
Initialize a dataframe with Pandas so that the pre-training loss is stored
'''
if os.name != 'posix':
prefix = '\\'
else:
prefix = '/'
if os.path.isfile(path + dataframe_to_init):
dataframe = pd.read_csv(path + dataframe_to_init, sep = ',', index_col = 0)
else:
columns_header = ['Training loss', 'Testing loss', 'Training error', 'Testing error']
data = np.array(data)
dataframe = pd.DataFrame(data.T, columns = columns_header)
dataframe.to_csv(path + prefix + "Classifiers" + prefix + dataframe_to_init)
return dataframe
def updateDataframe_classifier(BASE_PATH, datas, dataframe_to_update = 'classifier.csv'):
'''
Add data to the pandas dataframe
'''
if os.name != 'posix':
prefix = '\\'
else:
prefix = '/'
data = [datas[0], datas[1], datas[2], datas[3]] #train loss, test loss, train error, test error
dataframe = pd.read_csv(BASE_PATH + prefix + "Classifiers" + prefix + dataframe_to_update, sep = ',', index_col = 0) #load old dataframe
new_data = pd.DataFrame([data],index=[1],columns=dataframe.columns)
dataframe = pd.concat([dataframe, new_data], axis=0)
dataframe.to_csv(BASE_PATH + prefix + dataframe_to_update)
return dataframe
def createPath(archi = "MLP", dataset = "MNIST"):
'''
Create path to save data
'''
if os.name != 'posix':
BASE_PATH = "\\\\?\\" + os.getcwd()
prefix = '\\'
else:
BASE_PATH = os.getcwd()
prefix = '/'
BASE_PATH += prefix + 'DATA-' + archi + "-" + dataset
BASE_PATH += prefix + datetime.datetime.now().strftime("%Y-%m-%d")
if not os.path.exists(BASE_PATH):
os.makedirs(BASE_PATH)
_ = shutil.copy('plotFunction.py', BASE_PATH)
#filePath = shutil.copy('plot-notebook.ipynb', BASE_PATH)
files = os.listdir(BASE_PATH)
if 'plotFunction.py' in files:
files.pop(files.index('plotFunction.py'))
if not files:
BASE_PATH = BASE_PATH + prefix + 'S-1'
else:
tab = []
if '.DS_Store' in files:
files.pop(files.index('.DS_Store'))
for names in files:
tab.append(int(names.split('-')[1]))
BASE_PATH += prefix + 'S-' + str(max(tab)+1)
try:
os.mkdir(BASE_PATH)
except:
pass
_ = shutil.copy('plot-notebook.ipynb', BASE_PATH)
try:
os.mkdir(BASE_PATH + prefix + "Weights")
except:
pass
try:
os.mkdir(BASE_PATH + prefix + "Models")
except:
pass
try:
os.mkdir(BASE_PATH + prefix + "Classifiers")
except:
pass
return BASE_PATH
def saveHyperparameters(args, BASE_PATH):
'''
Save all hyperparameters in the path provided
'''
if os.name != 'posix':
prefix = '\\'
else:
prefix = '/'
f = open(BASE_PATH + prefix + 'Hyperparameters.txt', 'w')
f.write('Layer-Wise SSL \n')
f.write(' Parameters of the simulation \n ')
f.write('\n')
for key in args.__dict__:
f.write(key)
f.write(': ')
f.write(str(args.__dict__[key]))
f.write('\n')
f.close()
def save_weights(BASE_PATH, prefix, net, epoch):
'''
Store the first 100 weights of the first weight matrix
'''
fig, axs = plt.subplots(10, 10, figsize=(5, 5))
for i, ax in enumerate(axs.flat):
ax.imshow(net.layers[0].weight[i,:].view(28,28).detach().cpu(), cmap= "gray") # Plot the weight matrix
ax.axis('off')
plt.tight_layout()
plt.savefig(BASE_PATH + prefix + "Weights" + prefix + "Weights_epoch#" + str(epoch) + ".pdf", format = "pdf")
plt.close()
return 0
def store_checkpoint(BASE_PATH, args, net, epoch, layer, loss):
'''
Function that store a checkpoint after each epoch of pretraining
Store the checkpoint of the model
Store the current pretraining loss
Store the
'''
if os.name != 'posix':
prefix = '\\'
else:
prefix = '/'
#store checkpoint
torch.save(net.state_dict(), BASE_PATH + prefix + "Models" + prefix + "checkpoint.pt")
#store weight at some epochs
if (epoch % 20) == 0 and layer == 0:
save_weights(BASE_PATH, prefix, net, epoch)
#store the pretraining loss
updateDataframe_pretraining(BASE_PATH, loss, dataframe_to_update = 'pre_training.csv')
return 0
def pretrain(args, net, train_loader, train_layer = 0):
'''
Pre-train the network for 1 epoch
Train_layer indicates which layer to specifically train (sequential training)
'''
net.eval()
loss_tot = 0
with torch.no_grad():
comp_mini_batch = 0
for batch_idx, (datas, _) in enumerate(tqdm(train_loader, position = 0, leave = True)): #now datas has a len of n_average!
#print("-------")
net.optimizer.zero_grad()
for idx, data in enumerate(datas):
#print('iter mini-batch')
data = net.single_batch(data) #set the first dim to be n_views*batch_size
data = data.to(net.device) #put on the GPU
perturbation = net.generate_perturbation(layer = train_layer) #generate random perturbation
#print(perturbation)
pos_obj_repr, pos_obj_std, pos_obj_cov = net(data, train_layer, perturbation) #the loss is computed at each layer in the forward function
neg_obj_repr, neg_obj_std, neg_obj_cov = net(data, train_layer, -1*perturbation) #the loss is computed at each layer in the forward function
pos_obj = net.losses[train_layer].sim_coeff*pos_obj_repr + net.losses[train_layer].std_coeff* pos_obj_std + net.losses[train_layer].cov_coeff*pos_obj_cov
neg_obj = net.losses[train_layer].sim_coeff*neg_obj_repr + net.losses[train_layer].std_coeff* neg_obj_std + net.losses[train_layer].cov_coeff*neg_obj_cov
#print(pos_obj_repr, pos_obj_std, pos_obj_cov)
#print(neg_obj_repr, neg_obj_std, neg_obj_cov)
#print(pos_obj_repr-neg_obj_repr, pos_obj_std-neg_obj_std, pos_obj_cov-neg_obj_cov)
if idx == 0: #for the first "mini-mini-batch" we compute the gradient
grads = net.compute_spsa(perturbation, pos_obj, neg_obj, layer = train_layer)
grads_repr = net.compute_spsa(perturbation, pos_obj_repr, neg_obj_repr, layer = train_layer)
grads_std = net.compute_spsa(perturbation, pos_obj_std, neg_obj_std, layer = train_layer)
grads_cov = net.compute_spsa(perturbation, pos_obj_cov, neg_obj_cov, layer = train_layer)
else:
grads += net.compute_spsa(perturbation, pos_obj, neg_obj, layer = train_layer)
grads_repr += net.compute_spsa(perturbation, pos_obj_repr, neg_obj_repr, layer = train_layer)
grads_std += net.compute_spsa(perturbation, pos_obj_std, neg_obj_std, layer = train_layer)
grads_cov += net.compute_spsa(perturbation, pos_obj_cov, neg_obj_cov, layer = train_layer)
grads_avg = net.losses[train_layer].sim_coeff * grads_repr + net.losses[train_layer].std_coeff*grads_std + net.losses[train_layer].cov_coeff*grads_cov
grads /= args.n_average #average the resulting gradient
grads_repr /= args.n_average
grads_std /= args.n_average
grads_cov /= args.n_average
grads_avg /= args.n_average
#print(grads)
#print(grads_avg)
net.optimizer.zero_grad()
net.apply_spsa(grads_avg, layer = train_layer) #apply the computed grad to the corresponding parameters of the network
loss_tot += (pos_obj-neg_obj).item()
net.optimizer.step() #optimizer step with the gradients we fed to the parameters
return net, loss_tot/len(train_loader.dataset)
def pretraining_loop(BASE_PATH, args, net, train_loader, train_loader_classifier, test_loader, epochs = 20):
'''
pre-train the MLP for N epochs
'''
loss_tot = []
store_checkpoint(BASE_PATH, args, net, -1, 0, 0)
for layer in range(args.nlayers):
net.reset_perturbation_step() #reset the perturbation step to 1
for epoch in tqdm(range(epochs), position = 0, leave = True):
net, loss = pretrain(args, net, train_loader, train_layer = layer)
loss_tot.append(loss)
# ADD training linear classifier every k epochs
store_checkpoint(BASE_PATH, args, net, epoch, layer, loss)
if epoch%50 == 0: #train linear classifiers every 50 epochs to see the convergence
print("training linear classifier")
training_classifiers(BASE_PATH, args, net, epoch, train_loader_classifier, test_loader, layer = layer)
net.update_perturbation_step() #decay the perturbation step
return net, loss_tot
def scaled_sigmoid(x, a, b, s, z):
return s/(1+np.exp(-a*(x-b)))+z
def param_sigmoid(args, plot = True):
'''
Function to generate the parametrization (sigmoid) coefficients
'''
colormap = plt.cm.Reds
colors = [colormap(i) for i in np.linspace(0.2,1,4)]
scale = args.scale
slope = args.slope
threshold = args.threshold
bias = args.bias
#continuous settings (visualization only!)
x = np.linspace(1,4, 100)
ysim = scaled_sigmoid(x, slope[0], threshold[0], scale[0], bias[0])
yvar = scaled_sigmoid(x, slope[1], threshold[1], scale[1], bias[1])
ycovar = scaled_sigmoid(x, slope[2], threshold[2], scale[2], bias[2])
yintravar = scaled_sigmoid(x, slope[3], threshold[3], scale[3], bias[3])
if plot == True:
plt.figure()
plt.plot(x, ysim, label = "similarity", color = colors[3])
plt.plot(x, yvar, label = "variance", color = colors[2])
plt.plot(x, ycovar, label = "covariance", color = colors[1])
plt.plot(x, yintravar, label = "intra-sample variance", color = colors[0])
# discrete settings
x = np.arange(1,5)
ysim = scaled_sigmoid(x, slope[0], threshold[0], scale[0], bias[0])
yvar = scaled_sigmoid(x, slope[1], threshold[1], scale[1], bias[1])
ycovar = scaled_sigmoid(x, slope[2], threshold[2], scale[2], bias[2])
yintravar = scaled_sigmoid(x, slope[3], threshold[3], scale[3], bias[3])
if plot == True:
plt.plot(x, ysim, "ko", label = "similarity")
plt.plot(x, yvar, "ko", label = "variance")
plt.plot(x, ycovar, "ko", label = "covariance")
plt.plot(x, yintravar, "ko", label = "intra-sample variance")
plt.ylim([0,30])
plt.legend(bbox_to_anchor=(1.1, 1))
plt.show()
print("ysim = " + str(ysim))
print("yvar = " + str(yvar))
print("ycovar = " + str(ycovar))
print("yintravar = " + str(yintravar))
return ysim, yvar, ycovar, yintravar
class Network_class(nn.Module):
'''
Define the network used
'''
def __init__(self, args):
super(Network_class, self).__init__()
self.fc1 = nn.Linear(args.nneurons, 10, bias = True)
if args.device >= 0 and torch.cuda.is_available():
device = torch.device(args.device)
self.cuda = True
else:
device = torch.device("cpu")
self.cuda = False
self.device = device
self = self.to(device)
self.optimizer = torch.optim.Adam(self.parameters(), lr=args.lr_classifier, betas=(0.9, 0.999))
def forward(self, x):
'''
Simple linear layer that takes as input the features exctracted by the network and output the classes of the input
'''
y = self.fc1(x)
return y
def train_classifier(net, net_class, train_loader_classifier, input_layer = 0):
'''
Train the final linear classifier
1. Collect data from the dataset
2. Perform a forward pass through the pre-train network which weights have been frozen
3. Send the final layer of the pre-trained network to the linear classifier
4. Compute the loss and compute the gradient of only the weights of the linear classifier
5. Only update the weight of the classifier
'''
criterion = nn.CrossEntropyLoss()
net.eval()
net.zero_grad()
error, loss_tot = 0, 0
for batch_idx, (data, target) in enumerate(train_loader_classifier):
net_class.optimizer.zero_grad()
data, target = data.to(net.device), target.to(net.device)
with torch.no_grad():
states = net.forward_simple(data) #simple forward pass with the pre-trained network
output = states[input_layer]
y = net_class(output)
loss = criterion(y, torch.argmax(target, dim=1))
loss.backward()
loss_tot += loss.item()
net_class.optimizer.step()
error += (torch.argmax(y, dim =1) != torch.argmax(target, dim =1)).sum()
return (error/len(train_loader_classifier.dataset))*100, loss_tot/len(train_loader_classifier.dataset)
def test_classifier(net, net_class, test_loader, input_layer = 0):
'''
Test the whole architecture: pre-trained feature extractor + linear classifier
1. Collect data from the dataset
2. Perform a forward pass through the pre-train network which weights have been frozen
3. Send the final layer of the pre-trained network to the linear classifier and compute the loss & prediction
'''
criterion = nn.CrossEntropyLoss()
net.eval()
net.zero_grad()
error, loss_tot = 0, 0
for batch_idx, (data, target) in enumerate(test_loader):
data, target = data.to(net.device), target.to(net.device)
with torch.no_grad():
states = net.forward_simple(data) #simple forward pass with the pre-trained network
output = states[input_layer]
y = net_class(output) #forward pass classifier
loss = criterion(y, torch.argmax(target, dim=1))
loss_tot += loss.item()
error += (torch.argmax(y, dim =1) != torch.argmax(target, dim =1)).sum()
return (error/len(test_loader.dataset))*100, loss_tot/len(test_loader.dataset)
def training_classifier_loop(args, net, train_loader_classifier, test_loader, input_layer = 0):
'''
Function used to instantiate a linear probe on each layer, train it and store the corresponding training curves
'''
net_class = Network_class(args)
train_loss, train_err = [], []
test_loss, test_err = [], []
for k in range(args.epochs_classifier):
error, loss = train_classifier(net, net_class, train_loader_classifier, input_layer = input_layer)
train_loss.append(loss)
train_err.append(error.item())
error, loss = test_classifier(net, net_class, test_loader, input_layer = input_layer)
test_loss.append(loss)
test_err.append(error.item())
return train_err, test_err, train_loss, test_loss
def training_classifiers(BASE_PATH, args, net, epoch, train_loader_classifier, test_loader, layer):
'''
Train a linear classifier on top of each layer - store the corresponding training curves
'''
net.eval()
train_err, test_err, train_loss, test_loss = training_classifier_loop(args, net, train_loader_classifier, test_loader, input_layer = layer)
name_dataframe = "linear_classifier_layer#" + str(layer) + "_epoch#" + str(epoch) + ".csv"
save_Dataframe_classifier(BASE_PATH, [train_loss, test_loss, train_err, test_err], dataframe_to_init = name_dataframe)
return 0