-
Notifications
You must be signed in to change notification settings - Fork 4
/
earlystop.py
56 lines (49 loc) · 2 KB
/
earlystop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import torch
from pathlib import Path
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience, verbose=False, delta=0, save_path='checkpoint.pt', reverse=True):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_score_min = np.Inf
self.delta = delta
self.save_path = save_path
self.reverse = reverse
self.__check_path__()
def __check_path__(self):
parent_dir = Path(self.save_path).parent
if not parent_dir.exists(): parent_dir.mkdir()
def __call__(self, score, model):
if self.reverse:
score = -score
if self.best_score is None:
self.best_score = score
self.save_checkpoint(score, model)
elif score < self.best_score - self.delta:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(score, model)
self.counter = 0
def save_checkpoint(self, score, model):
"""Saves model when validation loss decrease."""
if self.verbose:
print(f'score ({self.val_score_min:.6f} --> {score:.6f}). Saving model ...')
torch.save(model.state_dict(), self.save_path)
self.val_score_min = score