-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA02_1_Get_individual_samples.py
33 lines (23 loc) · 1.07 KB
/
A02_1_Get_individual_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import pickle
import numpy as np
with open ('../data/individual_ID_list', 'rb') as fp:
individual_ID_list = pickle.load(fp)
with open('../data/not_recommend_using_individual_ID.pickle', 'rb') as fp: # due to high error records rate
not_recommend_samples = pickle.load(fp)
seed = 11
Num_ind = 1000
print('Total ind before', len(individual_ID_list))
individual_ID_list = list(set(individual_ID_list).difference(not_recommend_samples))
print('After filter not recommend ind', len(individual_ID_list))
np.random.seed(seed)
used_individual = list(np.random.choice(individual_ID_list, size=Num_ind, replace=False))
assert len(set(used_individual)) == len(used_individual) # no replacement check
analysis_individual = [994326032]
for idx in analysis_individual:
if idx not in used_individual:
used_individual.append(idx)
used_individual.pop(0)
assert len(used_individual) == Num_ind
print('Final num selected sample', len(used_individual))
with open ('../data/individual_ID_list_test_' + str(Num_ind) + '.pickle', 'wb') as fp:
pickle.dump(used_individual,fp)