forked from things-nyc/arduino-lmic
-
Notifications
You must be signed in to change notification settings - Fork 212
/
hal.cpp
408 lines (342 loc) · 12.2 KB
/
hal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/*******************************************************************************
* Copyright (c) 2015 Matthijs Kooijman
* Copyright (c) 2018 MCCI Corporation
*
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://www.eclipse.org/legal/epl-v10.html
*
* This the HAL to run LMIC on top of the Arduino environment.
*******************************************************************************/
#include <Arduino.h>
#include <SPI.h>
// include all the lmic header files, including ../lmic/hal.h
#include "../lmic.h"
// include the C++ hal.h
#include "hal.h"
// we may need some things from stdio.
#include <stdio.h>
// -----------------------------------------------------------------------------
// I/O
static const Arduino_LMIC::HalPinmap_t *plmic_pins;
static Arduino_LMIC::HalConfiguration_t *pHalConfig;
static Arduino_LMIC::HalConfiguration_t nullHalConig;
static void hal_interrupt_init(); // Fwd declaration
static void hal_io_init () {
// NSS and DIO0 are required, DIO1 is required for LoRa, DIO2 for FSK
ASSERT(plmic_pins->nss != LMIC_UNUSED_PIN);
ASSERT(plmic_pins->dio[0] != LMIC_UNUSED_PIN);
ASSERT(plmic_pins->dio[1] != LMIC_UNUSED_PIN || plmic_pins->dio[2] != LMIC_UNUSED_PIN);
// Serial.print("nss: "); Serial.println(plmic_pins->nss);
// Serial.print("rst: "); Serial.println(plmic_pins->rst);
// Serial.print("dio[0]: "); Serial.println(plmic_pins->dio[0]);
// Serial.print("dio[1]: "); Serial.println(plmic_pins->dio[1]);
// Serial.print("dio[2]: "); Serial.println(plmic_pins->dio[2]);
// initialize SPI chip select to high (it's active low)
digitalWrite(plmic_pins->nss, HIGH);
pinMode(plmic_pins->nss, OUTPUT);
if (plmic_pins->rxtx != LMIC_UNUSED_PIN) {
// initialize to RX
digitalWrite(plmic_pins->rxtx, LOW != plmic_pins->rxtx_rx_active);
pinMode(plmic_pins->rxtx, OUTPUT);
}
if (plmic_pins->rst != LMIC_UNUSED_PIN) {
// initialize RST to floating
pinMode(plmic_pins->rst, INPUT);
}
hal_interrupt_init();
}
// val == 1 => tx
void hal_pin_rxtx (u1_t val) {
if (plmic_pins->rxtx != LMIC_UNUSED_PIN)
digitalWrite(plmic_pins->rxtx, val != plmic_pins->rxtx_rx_active);
}
// set radio RST pin to given value (or keep floating!)
void hal_pin_rst (u1_t val) {
if (plmic_pins->rst == LMIC_UNUSED_PIN)
return;
if(val == 0 || val == 1) { // drive pin
digitalWrite(plmic_pins->rst, val);
pinMode(plmic_pins->rst, OUTPUT);
} else { // keep pin floating
pinMode(plmic_pins->rst, INPUT);
}
}
s1_t hal_getRssiCal (void) {
return plmic_pins->rssi_cal;
}
#if !defined(LMIC_USE_INTERRUPTS)
static void hal_interrupt_init() {
pinMode(plmic_pins->dio[0], INPUT);
if (plmic_pins->dio[1] != LMIC_UNUSED_PIN)
pinMode(plmic_pins->dio[1], INPUT);
if (plmic_pins->dio[2] != LMIC_UNUSED_PIN)
pinMode(plmic_pins->dio[2], INPUT);
}
static bool dio_states[NUM_DIO] = {0};
static void hal_io_check() {
uint8_t i;
for (i = 0; i < NUM_DIO; ++i) {
if (plmic_pins->dio[i] == LMIC_UNUSED_PIN)
continue;
if (dio_states[i] != digitalRead(plmic_pins->dio[i])) {
dio_states[i] = !dio_states[i];
if (dio_states[i])
radio_irq_handler(i);
}
}
}
#else
// Interrupt handlers
static ostime_t interrupt_time[NUM_DIO] = {0};
static void hal_isrPin0() {
ostime_t now = os_getTime();
interrupt_time[0] = now ? now : 1;
}
static void hal_isrPin1() {
ostime_t now = os_getTime();
interrupt_time[1] = now ? now : 1;
}
static void hal_isrPin2() {
ostime_t now = os_getTime();
interrupt_time[2] = now ? now : 1;
}
typedef void (*isr_t)();
static isr_t interrupt_fns[NUM_DIO] = {hal_isrPin0, hal_isrPin1, hal_isrPin2};
static void hal_interrupt_init() {
for (uint8_t i = 0; i < NUM_DIO; ++i) {
if (plmic_pins->dio[i] == LMIC_UNUSED_PIN)
continue;
attachInterrupt(digitalPinToInterrupt(plmic_pins->dio[i]), interrupt_fns[i], RISING);
}
}
static void hal_io_check() {
uint8_t i;
for (i = 0; i < NUM_DIO; ++i) {
ostime_t iTime;
if (plmic_pins->dio[i] == LMIC_UNUSED_PIN)
continue;
iTime = interrupt_time[i];
if (iTime) {
interrupt_time[i] = 0;
radio_irq_handler_v2(i, iTime);
}
}
}
#endif // LMIC_USE_INTERRUPTS
// -----------------------------------------------------------------------------
// SPI
static void hal_spi_init () {
SPI.begin();
}
static void hal_spi_trx(u1_t cmd, u1_t* buf, size_t len, bit_t is_read) {
uint32_t spi_freq;
u1_t nss = plmic_pins->nss;
if ((spi_freq = plmic_pins->spi_freq) == 0)
spi_freq = LMIC_SPI_FREQ;
SPISettings settings(spi_freq, MSBFIRST, SPI_MODE0);
SPI.beginTransaction(settings);
digitalWrite(nss, 0);
SPI.transfer(cmd);
for (; len > 0; --len, ++buf) {
u1_t data = is_read ? 0x00 : *buf;
data = SPI.transfer(data);
if (is_read)
*buf = data;
}
digitalWrite(nss, 1);
SPI.endTransaction();
}
void hal_spi_write(u1_t cmd, const u1_t* buf, size_t len) {
hal_spi_trx(cmd, (u1_t*)buf, len, 0);
}
void hal_spi_read(u1_t cmd, u1_t* buf, size_t len) {
hal_spi_trx(cmd, buf, len, 1);
}
// -----------------------------------------------------------------------------
// TIME
static void hal_time_init () {
// Nothing to do
}
u4_t hal_ticks () {
// Because micros() is scaled down in this function, micros() will
// overflow before the tick timer should, causing the tick timer to
// miss a significant part of its values if not corrected. To fix
// this, the "overflow" serves as an overflow area for the micros()
// counter. It consists of three parts:
// - The US_PER_OSTICK upper bits are effectively an extension for
// the micros() counter and are added to the result of this
// function.
// - The next bit overlaps with the most significant bit of
// micros(). This is used to detect micros() overflows.
// - The remaining bits are always zero.
//
// By comparing the overlapping bit with the corresponding bit in
// the micros() return value, overflows can be detected and the
// upper bits are incremented. This is done using some clever
// bitwise operations, to remove the need for comparisons and a
// jumps, which should result in efficient code. By avoiding shifts
// other than by multiples of 8 as much as possible, this is also
// efficient on AVR (which only has 1-bit shifts).
static uint8_t overflow = 0;
// Scaled down timestamp. The top US_PER_OSTICK_EXPONENT bits are 0,
// the others will be the lower bits of our return value.
uint32_t scaled = micros() >> US_PER_OSTICK_EXPONENT;
// Most significant byte of scaled
uint8_t msb = scaled >> 24;
// Mask pointing to the overlapping bit in msb and overflow.
const uint8_t mask = (1 << (7 - US_PER_OSTICK_EXPONENT));
// Update overflow. If the overlapping bit is different
// between overflow and msb, it is added to the stored value,
// so the overlapping bit becomes equal again and, if it changed
// from 1 to 0, the upper bits are incremented.
overflow += (msb ^ overflow) & mask;
// Return the scaled value with the upper bits of stored added. The
// overlapping bit will be equal and the lower bits will be 0, so
// bitwise or is a no-op for them.
return scaled | ((uint32_t)overflow << 24);
// 0 leads to correct, but overly complex code (it could just return
// micros() unmodified), 8 leaves no room for the overlapping bit.
static_assert(US_PER_OSTICK_EXPONENT > 0 && US_PER_OSTICK_EXPONENT < 8, "Invalid US_PER_OSTICK_EXPONENT value");
}
// Returns the number of ticks until time. Negative values indicate that
// time has already passed.
static s4_t delta_time(u4_t time) {
return (s4_t)(time - hal_ticks());
}
void hal_waitUntil (u4_t time) {
s4_t delta = delta_time(time);
// From delayMicroseconds docs: Currently, the largest value that
// will produce an accurate delay is 16383.
while (delta > (16000 / US_PER_OSTICK)) {
delay(16);
delta -= (16000 / US_PER_OSTICK);
}
if (delta > 0)
delayMicroseconds(delta * US_PER_OSTICK);
}
// check and rewind for target time
u1_t hal_checkTimer (u4_t time) {
// No need to schedule wakeup, since we're not sleeping
return delta_time(time) <= 0;
}
static uint8_t irqlevel = 0;
void hal_disableIRQs () {
noInterrupts();
irqlevel++;
}
void hal_enableIRQs () {
if(--irqlevel == 0) {
interrupts();
// Instead of using proper interrupts (which are a bit tricky
// and/or not available on all pins on AVR), just poll the pin
// values. Since os_runloop disables and re-enables interrupts,
// putting this here makes sure we check at least once every
// loop.
//
// As an additional bonus, this prevents the can of worms that
// we would otherwise get for running SPI transfers inside ISRs
hal_io_check();
}
}
void hal_sleep () {
// Not implemented
}
// -----------------------------------------------------------------------------
#if defined(LMIC_PRINTF_TO)
#if !defined(__AVR)
static ssize_t uart_putchar (void *, const char *buf, size_t len) {
return LMIC_PRINTF_TO.write((const uint8_t *)buf, len);
}
static cookie_io_functions_t functions =
{
.read = NULL,
.write = uart_putchar,
.seek = NULL,
.close = NULL
};
void hal_printf_init() {
stdout = fopencookie(NULL, "w", functions);
if (stdout != nullptr) {
setvbuf(stdout, NULL, _IONBF, 0);
}
}
#else // defined(__AVR)
static int uart_putchar (char c, FILE *)
{
LMIC_PRINTF_TO.write(c) ;
return 0 ;
}
void hal_printf_init() {
// create a FILE structure to reference our UART output function
static FILE uartout;
memset(&uartout, 0, sizeof(uartout));
// fill in the UART file descriptor with pointer to writer.
fdev_setup_stream (&uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE);
// The uart is the standard output device STDOUT.
stdout = &uartout ;
}
#endif // !defined(ESP8266) || defined(ESP31B) || defined(ESP32)
#endif // defined(LMIC_PRINTF_TO)
void hal_init (void) {
// use the global constant
Arduino_LMIC::hal_init_with_pinmap(&lmic_pins);
}
// hal_init_ex is a C API routine, written in C++, and it's called
// with a pointer to an lmic_pinmap.
void hal_init_ex (const void *pContext) {
const lmic_pinmap * const pHalPinmap = (const lmic_pinmap *) pContext;
if (! Arduino_LMIC::hal_init_with_pinmap(pHalPinmap)) {
hal_failed(__FILE__, __LINE__);
}
}
// C++ API: initialize the HAL properly with a configuration object
namespace Arduino_LMIC {
bool hal_init_with_pinmap(const HalPinmap_t *pPinmap)
{
if (pPinmap == nullptr)
return false;
// set the static pinmap pointer.
plmic_pins = pPinmap;
// set the static HalConfiguration pointer.
HalConfiguration_t * const pThisHalConfig = pPinmap->pConfig;
if (pThisHalConfig != nullptr)
pHalConfig = pThisHalConfig;
else
pHalConfig = &nullHalConig;
pHalConfig->begin();
// configure radio I/O and interrupt handler
hal_io_init();
// configure radio SPI
hal_spi_init();
// configure timer and interrupt handler
hal_time_init();
#if defined(LMIC_PRINTF_TO)
// printf support
hal_printf_init();
#endif
// declare success
return true;
}
}; // namespace Arduino_LMIC
void hal_failed (const char *file, u2_t line) {
#if defined(LMIC_FAILURE_TO)
LMIC_FAILURE_TO.println("FAILURE ");
LMIC_FAILURE_TO.print(file);
LMIC_FAILURE_TO.print(':');
LMIC_FAILURE_TO.println(line);
LMIC_FAILURE_TO.flush();
#endif
hal_disableIRQs();
while(1);
}
ostime_t hal_setModuleActive (bit_t val) {
// setModuleActive() takes a c++ bool, so
// it effectively says "val != 0". We
// don't have to.
return pHalConfig->setModuleActive(val);
}
bit_t hal_queryUsingTcxo(void) {
return pHalConfig->queryUsingTcxo();
}