-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsaes.py
246 lines (191 loc) · 6.83 KB
/
saes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
class SimplifiedAES(object):
"""Simplified AES is a simplified version of AES algorithm"""
# S-Box
sBox = [
0x9,
0x4,
0xA,
0xB,
0xD,
0x1,
0x8,
0x5,
0x6,
0x2,
0x0,
0x3,
0xC,
0xE,
0xF,
0x7,
]
# Inverse S-Box
sBoxI = [
0xA,
0x5,
0x9,
0xB,
0x1,
0x7,
0x8,
0xF,
0x6,
0x0,
0x2,
0x3,
0xC,
0x4,
0xD,
0xE,
]
def __init__(self, key):
# Round keys: K0 = w0 + w1; K1 = w2 + w3; K2 = w4 + w5
self.pre_round_key, self.round1_key, self.round2_key = self.key_expansion(key)
def sub_word(self, word):
""" Substitute word
:param word: word
"""
# Take each nibble in the word and substitute another nibble for it using
# the Sbox table
return (self.sBox[(word >> 4)] << 4) + self.sBox[word & 0x0F]
def rot_word(self, word):
""" Rotate word
:param word: word
"""
# Swapping the two nibbles in the word since eqv to rotate here
return ((word & 0x0F) << 4) + ((word & 0xF0) >> 4)
def key_expansion(self, key):
"""Key expansion
Creates three 16-bit round keys from one single 16-bit cipher key
Cipher Key : | n0 | n1 | n2 | n3 |
w[0] : | n0 | n1 |
w[1] : | n2 | n3 |
for i % 2 == 0:
w[i] : w[i - 2] XOR (SubWord(RotWord(W[i-1])) XOR RC[Nr])
else:
w[i] = w[i - 1] XOR w[i - 2]
:param key: key to be used for encryption and/or decryption
:returns: Tuple containing pre-round, round 1 and round 2 key in order
"""
# Round constants
Rcon1 = 0x80
Rcon2 = 0x30
# Calculating value of each word
w = [None] * 6
w[0] = (key & 0xFF00) >> 8
w[1] = key & 0x00FF
w[2] = w[0] ^ (self.sub_word(self.rot_word(w[1])) ^ Rcon1)
w[3] = w[2] ^ w[1]
w[4] = w[2] ^ (self.sub_word(self.rot_word(w[3])) ^ Rcon2)
w[5] = w[4] ^ w[3]
return (
self.int_to_state((w[0] << 8) + w[1]), # Pre-Round key
self.int_to_state((w[2] << 8) + w[3]), # Round 1 key
self.int_to_state((w[4] << 8) + w[5]), # Round 2 key
)
def gf_mult(self, a, b):
"""Galois field multiplication of a and b in GF(2^4) / x^4 + x + 1
:param a: First number
:param b: Second number
:returns: Multiplication of both under GF(2^4)
"""
# Initialise
product = 0
# Mask the unwanted bits
a = a & 0x0F
b = b & 0x0F
# While both multiplicands are non-zero
while a and b:
# If LSB of b is 1
if b & 1:
# Add current a to product
product = product ^ a
# Update a to a * 2
a = a << 1
# If a overflows beyond 4th bit
if a & (1 << 4):
# XOR with irreducible polynomial with high term eliminated
a = a ^ 0b10011
# Update b to b // 2
b = b >> 1
return product
def int_to_state(self, n):
"""Convert a 2-byte integer into a 4-element vector (state matrix)
:param m: integer
:returns: state corresponding to the integer
"""
return [n >> 12 & 0xF, (n >> 4) & 0xF, (n >> 8) & 0xF, n & 0xF]
def state_to_int(self, m):
"""Convert a 4-element vector (state matrix) into 2-byte integer
:param m: state
:returns: integer corresponding to the state
"""
return (m[0] << 12) + (m[2] << 8) + (m[1] << 4) + m[3]
def add_round_key(self, s1, s2):
"""Add round keys in GF(2^4)
:param s1: First number
:param s2: Second number
:returns: Addition of both under GF(2^4)
"""
return [i ^ j for i, j in zip(s1, s2)]
def sub_nibbles(self, sbox, state):
"""Nibble substitution
:param sbox: Substitution box to use for transformatin
:param state: State to perform sub nibbles transformation on
:returns: Resultant state
"""
return [sbox[nibble] for nibble in state]
def shift_rows(self, state):
"""Shift rows and inverse shift rows of state matrix (same)
:param state: State to perform shift rows transformation on
:returns: Resultant state
"""
return [state[0], state[1], state[3], state[2]]
def mix_columns(self, state):
"""Mix columns transformation on state matrix
:param state: State to perform mix columns transformation on
:returns: Resultant state
"""
return [
state[0] ^ self.gf_mult(4, state[2]),
state[1] ^ self.gf_mult(4, state[3]),
state[2] ^ self.gf_mult(4, state[0]),
state[3] ^ self.gf_mult(4, state[1]),
]
def inverse_mix_columns(self, state):
"""Inverse mix columns transformation on state matrix
:param state: State to perform inverse mix columns transformation on
:returns: Resultant state
"""
return [
self.gf_mult(9, state[0]) ^ self.gf_mult(2, state[2]),
self.gf_mult(9, state[1]) ^ self.gf_mult(2, state[3]),
self.gf_mult(9, state[2]) ^ self.gf_mult(2, state[0]),
self.gf_mult(9, state[3]) ^ self.gf_mult(2, state[1]),
]
def encrypt(self, plaintext):
"""Encrypt plaintext with given key
Example::
ciphertext = SimplifiedAES(key=0b0100101011110101).encrypt(0b1101011100101000)
:param plaintext: 16 bit plaintext
:returns: 16 bit ciphertext
"""
state = self.add_round_key(self.pre_round_key, self.int_to_state(plaintext))
state = self.mix_columns(self.shift_rows(self.sub_nibbles(self.sBox, state)))
state = self.add_round_key(self.round1_key, state)
state = self.shift_rows(self.sub_nibbles(self.sBox, state))
state = self.add_round_key(self.round2_key, state)
return self.state_to_int(state)
def decrypt(self, ciphertext):
"""Decrypt ciphertext with given key
Example::
plaintext = SimplifiedAES(key=0b0100101011110101).decrypt(0b0010010011101100)
:param ciphertext: 16 bit ciphertext
:returns: 16 bit plaintext
"""
state = self.add_round_key(self.round2_key, self.int_to_state(ciphertext))
state = self.sub_nibbles(self.sBoxI, self.shift_rows(state))
state = self.inverse_mix_columns(self.add_round_key(self.round1_key, state))
state = self.sub_nibbles(self.sBoxI, self.shift_rows(state))
state = self.add_round_key(self.pre_round_key, state)
return self.state_to_int(state)