-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhorizon.py
279 lines (225 loc) · 7.92 KB
/
horizon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This file is part of the complex_terrain algorithm
M. Lamare, M. Dumont, G. Picard (IGE, CEN).
List of functions for the DEM horizon tool:
- horizon
- queues
- horizon forward
- horizon backward
- slope
The algorithm is based on Dozier et al. 1980, 1990. The python implementation
of the MATLAB code in MODimLAB (Sirguey et al. 2009) was applied here.
NB: Numba is used to speed up the process.
"""
from math import pi, cos, sin, sqrt, atan, degrees, radians
import numpy as np
from numba import njit
def queues(phi, B):
""" Algorithm to build queues to hold profiles.
Args:
phi (int): the azimuth angle
B (list): B
Returns:
Q (): Q
S_list (): S_list"""
# Set Q and S to None before they get updated
Q = None
S = None
N1 = B[0]
N2 = B[1]
M1 = B[2]
M2 = B[3]
if phi <= pi / 2:
for y in range(-M1, M2 + 1, 1):
for x in range(-N1, N2 + 1, 1):
xp = round(x * cos(phi) - y * sin(phi))
# Update Q
if Q is None:
Q = {int(xp + N1 + M2): [[0, 0]]}
else:
if int(xp + N1 + M2) not in Q:
Q.update({int(xp + N1 + M2): [[0, 0]]})
Q[int(xp + N1 + M2)].append([x, y])
# Update S
if S is None:
S = {int(xp + N1 + M2): 0} # If not, create dictionnary
else:
if max(S.keys()) < int(xp + N1 + M2):
S.update({int(xp + N1 + M2): 0})
# Additional trick to replace Matlab dynamic allocation
if not int(xp + N1 + M2) in S:
S.update({int(xp + N1 + M2): 0})
S.update({int(xp + N1 + M2): S[int(xp + N1 + M2)] + 1})
else:
for y in range(M2, -M1 - 1, -1): # Replaces the while loop in MODimLAB
for x in range(-N1, N2 + 1, 1):
xp = round(x * cos(phi) - y * sin(phi))
# Calculate Q
if Q is None:
Q = {int(xp + N1 + M2): [[0, 0]]}
else:
if not int(xp + N1 + M2) in Q:
Q.update({int(xp + N1 + M2): [[0, 0]]})
Q[int(xp + N1 + M2)].append([x, y])
if S is None:
S = {int(xp + N1 + M2): 0}
else:
if max(S.keys()) < int(xp + N1 + M2):
S.update({int(xp + N1 + M2): 0})
# Additional trick to replace Matlab dynamic allocation
if not int(xp + N1 + M2) in S:
S.update({int(xp + N1 + M2): 0})
S.update({int(xp + N1 + M2): S[int(xp + N1 + M2)] + 1})
# Convert dictionary to list
S_list = [0] * max(S.keys())
for i in S.keys():
S_list[i - 1] = S[i]
return Q, S_list
@njit
def slope_nb(i, j, A, D):
""" Slope algorithm.
Args:
i (int): index of starting position
j (int): index of current position
A (list): Altitude
D (list): Distance
Returns:
s (float): slope"""
if A[j] <= A[i]:
s = 0
else:
s = (A[j] - A[i]) / (D[j] - D[i])
return s
@njit
def hrz_fwd_nb(A, D):
"""Fast one-dimensional algorithm for the forward direction.
Args:
A (list): Altitude
D (list): Distance
Returns:
H (list): Horizon points in the forward direction
"""
H = [0] * len(A)
H[len(A) - 1] = len(A) - 1
for i in range(len(A) - 2, 0 - 1, -1):
j = i + 1
found = 0
while found == 0:
if slope_nb(i, j, A, D) < slope_nb(j, H[j], A, D):
j = H[j]
else:
found = 1
if slope_nb(i, j, A, D) > slope_nb(j, H[j], A, D):
H[i] = j
elif slope_nb(i, j, A, D) == 0:
H[i] = i
else:
H[i] = H[j]
return H
@njit
def hrz_bwd_nb(A, D):
"""Fast one-dimensional algorithm for the backward direction
Args:
A (list): Altitude
D (list): Distance
Returns:
H (list): Horizon points in the forward direction"""
H = []
H.append(0)
for i in range(1, len(A), 1):
j = i - 1
found = 0
while found == 0:
if slope_nb(i, j, A, D) > slope_nb(j, H[j], A, D):
j = H[j]
else:
found = 1
if slope_nb(i, j, A, D) < slope_nb(j, H[j], A, D):
H.append(j)
elif slope_nb(i, j, A, D) == 0:
H.append(i)
else:
H.append(H[j])
return H
def dozier_horizon(dem_array, dem_pixel_size, phi):
""" Algorithm to calculate horizon functions along profiles.
The calculations are performed for profiles rotated by the azimuth angle
phi.
Args:
dem_array (ndarray): DEM array
pixel_size (int, int): Pixel size (x and y directions) of the DEM array
in meters
phi (int): azimuth angle
Returns:
:rtype: (list, list): a tuple containing a list with the
elevation to the horizon for the profile and a list with the
distance to the horizon for the profile (meters)."""
row, col = dem_array.shape # DEM size
dx = dem_pixel_size # Get pixel size
dy = dem_pixel_size
N1 = int(np.fix((col - 1) / 2.)) # Decimal point important!
N2 = int(np.ceil((col - 1) / 2.))
M1 = int(np.fix((row - 1) / 2.))
M2 = int(np.ceil((row - 1) / 2.))
# Call the queues function
queuout, S = queues(phi, [N1, N2, M1, M2])
if phi <= pi / 2:
J1 = int(round(N1 * cos(phi) + M2 * sin(phi)))
J2 = int(round(N2 * cos(phi) + M1 * sin(phi)))
else:
J1 = int(round(-N2 * cos(phi) + M2 * sin(phi)))
J2 = int(round(-N1 * cos(phi) + M1 * sin(phi)))
# Initialise the arrays Dh and Eh
Dh = np.zeros(shape=(2, row, col))
Eh = np.zeros(shape=(2, row, col))
for xp in range(-J1, J2 + 1, 1):
C = queuout[(xp + N1 + M2)]
C = C[1:]
# Initialise A and D
A = []
D = []
# Populate A and D (A for altitude and D for distance)
for j in range(0, S[int(xp + N1 + M2 - 1)], 1):
x = C[j][0]
y = C[j][1]
A.append(dem_array[y + M1, x + N1])
D.append(dx * x * sin(phi) + dy * y * cos(phi))
# Use fast algorithms for the forward and backward directions
Hf = hrz_fwd_nb(A, D)
Hb = hrz_bwd_nb(A, D)
for j in range(0, S[int(xp + N1 + M2 - 1)], 1):
x = C[j][0]
y = C[j][1]
if D[Hf[j]] - D[j] == 0:
Dh[0][int(y + M1), int(x + N1)] = D[-1] - D[j] + sqrt(
dx ** 2 + dy ** 2
)
Eh[0][int(y + M1), int(x + N1)] = 0
else:
Dh[0][int(y + M1), int(x + N1)] = D[Hf[j]] - D[j] + sqrt(
dx ** 2 + dy ** 2
)
Eh[0][int(y + M1), int(x + N1)] = degrees(
atan(
(radians(A[Hf[j]]) - radians(A[j]))
/ (radians(D[Hf[j]]) - radians(D[j]))
)
)
if D[j] - D[Hb[j]] == 0:
Dh[1][int(y + M1), int(x + N1)] = D[j] - D[0] + sqrt(
dx ** 2 + dy ** 2
)
Eh[1][int(y + M1), int(x + N1)] = 0
else:
Dh[1][int(y + M1), int(x + N1)] = D[j] - D[Hb[j]] + sqrt(
dx ** 2 + dy ** 2
)
Eh[1][int(y + M1), int(x + N1)] = degrees(
atan(
(radians(A[Hb[j]]) - radians(A[j]))
/ (radians(D[j]) - radians(D[Hb[j]]))
)
)
return Eh, Dh