forked from pybamm-team/PyBaMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDFN.py
52 lines (42 loc) · 1.26 KB
/
DFN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#
# Example showing how to load and solve the DFN
#
import pybamm
import numpy as np
pybamm.set_logging_level("INFO")
# load model
model = pybamm.lithium_ion.DFN()
# create geometry
geometry = model.default_geometry
# load parameter values and process model and geometry
param = model.default_parameter_values
param.process_model(model)
param.process_geometry(geometry)
# set mesh
var = pybamm.standard_spatial_vars
var_pts = {var.x_n: 30, var.x_s: 30, var.x_p: 30, var.r_n: 10, var.r_p: 10}
mesh = pybamm.Mesh(geometry, model.default_submesh_types, var_pts)
# discretise model
disc = pybamm.Discretisation(mesh, model.default_spatial_methods)
disc.process_model(model)
# solve model
t_eval = np.linspace(0, 3600, 100)
solver = pybamm.CasadiSolver(mode="safe", atol=1e-6, rtol=1e-3)
solution = solver.solve(model, t_eval)
# plot
plot = pybamm.QuickPlot(
solution,
[
"Negative particle concentration [mol.m-3]",
"Electrolyte concentration [mol.m-3]",
"Positive particle concentration [mol.m-3]",
"Current [A]",
"Negative electrode potential [V]",
"Electrolyte potential [V]",
"Positive electrode potential [V]",
"Terminal voltage [V]",
],
time_unit="seconds",
spatial_unit="um",
)
plot.dynamic_plot()