This repository has been archived by the owner on Oct 31, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 66
/
predict.py
executable file
·75 lines (62 loc) · 2.67 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/env python3
# given a directory of images output a list of image -> predictions
from PIL import Image, ImageDraw
from label_db import LabelDB
from scipy.special import expit
import argparse
import model as m
import numpy as np
import os
import random
import util as u
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--image-dir', type=str, required=True)
parser.add_argument('--num', type=int, default=None,
help='if set run prediction for this many random images. if not set run for all')
parser.add_argument('--output-label-db', type=str, default=None, help='if not set dont write label_db')
parser.add_argument('--run', type=str, required=True, help='model, also used as subdir for export-pngs')
parser.add_argument('--export-pngs', default='',
help='how, if at all, to export pngs {"", "predictions", "centroids"}')
opts = parser.parse_args()
train_opts, model = m.restore_model(opts.run)
print(model.summary())
if opts.output_label_db:
db = LabelDB(label_db_file=opts.output_label_db)
db.create_if_required()
else:
db = None
if opts.export_pngs:
export_dir = "predict_examples/%s" % opts.run
print("exporting prediction samples to [%s]" % export_dir)
if not os.path.exists(export_dir):
os.makedirs(export_dir)
imgs = os.listdir(opts.image_dir)
if opts.num is not None:
assert opts.num > 0
imgs = random.sample(imgs, opts.num)
for idx, filename in enumerate(sorted(imgs)):
# load next image
img = np.array(Image.open(opts.image_dir+"/"+filename)) # uint8 0->255 (H, W)
img = img.astype(np.float32)
img = (img / 127.5) - 1.0 # -1.0 -> 1.0 # see data.py
# run through model (adding / removing dummy batch)
# recall: output from model is logits so we need to expit
# TODO: do this in batch !!
prediction = expit(model.predict(np.expand_dims(img, 0))[0])
# calc [(x,y), ...] centroids
centroids = u.centroids_of_connected_components(prediction,
rescale=2.0,
threshold=train_opts['connected_components_threshold'])
print("\t".join(map(str, [idx, filename, len(centroids)])))
# export some debug image (if requested)
if opts.export_pngs != '':
if opts.export_pngs == 'predictions':
debug_img = u.side_by_side(rgb=img, bitmap=prediction)
elif opts.export_pngs == 'centroids':
debug_img = u.red_dots(rgb=img, centroids=centroids)
else:
raise Exception("unknown --export-pngs option")
debug_img.save("%s/%s.png" % (export_dir, filename))
# set new labels (if requested)
if db:
db.set_labels(filename, centroids, flip=True)