-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathagents.py
298 lines (229 loc) · 10.4 KB
/
agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#!/usr/bin/env python
import math
import random
import behaviors
import features
import learning
class PacmanAgent(object):
"""Pacman agent abstract class.
Attributes:
index: Pacman agent index for game referral.
"""
def __init__(self, agent_id, ally_ids, enemy_ids):
self.agent_id = agent_id
self.actions = ['North', 'South', 'East', 'West', 'Stop']
def choose_action(self, state, action, reward, legal_actions, explore):
"""Select an action to be executed by the agent.
Args:
state: Current game state.
action: Last executed action.
reward: Reward for the previous action.
legal_actions: List of currently allowed actions.
explore: Boolean whether agent is allowed to explore.
Returns:
A Direction for the agent to follow (NORTH, SOUTH, EAST, WEST or
STOP).
"""
raise NotImplementedError('Pacman agent must contain a choose_action method'
'to select an action for the current game state.')
def save_policy(self, filename):
"""Save the learned policy into filename.
Args:
filename: File which stores the policy data.
"""
raise NotImplementedError('Pacman agent must be able to save its learned'
'policy')
def load_policy(self, filename):
"""Save the learned policy into filename.
Args:
filename: File which stores the policy data.
"""
raise NotImplementedError('Pacman agent must be able to save its learned'
'policy')
class GhostAgent(object):
"""Ghost agent abstract class.
Attributes:
index: Ghost agent index for game referral.
"""
def __init__(self, agent_id, ally_ids, enemy_ids):
self.agent_id = agent_id
self.actions = ['North', 'South', 'East', 'West']
def choose_action(self, state, action, reward, legal_actions, explore):
"""Select an action to be executed by the agent.
Ghosts can only select new actions at intersections or dead ends.
Args:
state: Current game state.
action: Last executed action.
reward: Reward for the previous action.
legal_actions: List of currently allowed actions.
explore: Boolean whether agent is allowed to explore.
Returns:
A Direction for the agent to follow (NORTH, SOUTH, EAST, WEST or
STOP).
"""
raise NotImplementedError('Ghost agent must contain a choose_action method'
'to select an action for the current game state.')
class RandomPacmanAgent(PacmanAgent):
"""Agent that randomly selects an action."""
def choose_action(self, state, action, reward, legal_actions, explore):
if len(legal_actions) > 0:
return random.choice(legal_actions)
class RandomGhostAgent(GhostAgent):
"""Agent that randomly selects an action."""
def choose_action(self, state, action, reward, legal_actions, explore):
if len(legal_actions) > 0:
return random.choice(legal_actions)
class QLearningAgent(PacmanAgent):
def __init__(self, agent_id, ally_ids, enemy_ids):
super(QLearningAgent, self).__init__(agent_id, ally_ids, enemy_ids)
self.exploration_rate = 0.1
self.learning = learning.QLearning(learning_rate=0.1, discount_factor=0.9,
actions=self.actions)
def choose_action(self, state, action, reward, legal_actions, explore):
self.learning.learn(state, action, reward)
suggested_action = self.learning.act(state, legal_actions)
if random.random() < self.exploration_rate:
return random.choice(legal_actions)
else:
return suggested_action
class QLearningWithApproximationAgent(PacmanAgent):
def __init__(self, agent_id, ally_ids, enemy_ids):
super(QLearningWithApproximationAgent, self).__init__(agent_id, ally_ids, enemy_ids)
self.features = [self.feature_ghost_distance, self.feature_food_distance]
self.exploration_rate = 0.1
self.learning = learning.QLearningWithApproximation(learning_rate=0.1,
discount_factor=0.9, actions=self.actions, features=self.features)
def _find_closest_distance(self, agent_position, position_list):
closest_distance = float('inf')
for position in position_list:
distance = math.sqrt((agent_position[0] - position[0])**2 + (agent_position[1] - position[1])**2)
if distance < closest_distance:
closest_distance = distance
return closest_distance
def feature_ghost_distance(self, state, action):
pacman_position = state[0]
ghost_positions = state[1]
return self._find_closest_distance(pacman_position, ghost_positions)
def feature_food_distance(self, state, action):
pacman_position = state[0]
food_positions = state[2]
return self._find_closest_distance(pacman_position, food_positions)
def choose_action(self, state, action, reward, legal_actions, explore):
self.learning.learn(state, action, reward)
suggested_action = self.learning.act(state, legal_actions)
if random.random() < self.exploration_rate:
return random.choice(legal_actions)
else:
return suggested_action
class EaterPacmanAgent(PacmanAgent):
def __init__(self, agent_id, ally_ids, enemy_ids):
super(EaterPacmanAgent, self).__init__(agent_id, ally_ids, enemy_ids)
self.eat_behavior = behaviors.EatBehavior()
def choose_action(self, state, action, reward, legal_actions, test):
suggested_action = self.eat_behavior(state, legal_actions)
if suggested_action in legal_actions:
return suggested_action
elif legal_actions == []:
return 'Stop'
else:
return random.choice(legal_actions)
class BehaviorLearningPacmanAgent(PacmanAgent):
def __init__(self, agent_id, ally_ids, enemy_ids):
super(BehaviorLearningPacmanAgent, self).__init__(agent_id, ally_ids, enemy_ids)
self.features = [features.FoodDistanceFeature()]
for enemy_id in enemy_ids:
self.features.append(features.EnemyDistanceFeature(enemy_id))
for id_ in [agent_id] + ally_ids + enemy_ids:
self.features.append(features.FragileAgentFeature(id_))
self.behaviors = [behaviors.EatBehavior(), behaviors.FleeBehavior(),
behaviors.SeekBehavior(), behaviors.PursueBehavior()]
self.K = 1.0 # Learning rate
self.exploration_rate = 0.1
self.learning = learning.QLearningWithApproximation(learning_rate=0.1,
discount_factor=0.9, actions=self.behaviors, features=self.features,
exploration_rate=self.exploration_rate)
self.previous_behavior = self.behaviors[0]
self.behavior_count = {}
self.reset_behavior_count()
self.test_mode = False
def reset_behavior_count(self):
for behavior in self.behaviors:
self.behavior_count[str(behavior)] = 0
def get_policy(self):
return self.learning.get_weights()
def set_policy(self, weights):
self.learning.set_weights(weights)
def choose_action(self, state, action, reward, legal_actions, test):
if test:
self.enable_test_mode()
else:
self.enable_learn_mode()
if not self.test_mode:
self.learning.learning_rate = self.K/(self.K + state.iteration)
self.learning.learn(state, self.previous_behavior, reward)
behavior = self.learning.act(state)
self.previous_behavior = behavior
suggested_action = behavior(state, legal_actions)
self.behavior_count[str(behavior)] += 1
if suggested_action in legal_actions:
return suggested_action
elif legal_actions == []:
return 'Stop'
else:
return random.choice(legal_actions)
def enable_learn_mode(self):
self.test_mode = False
self.learning.exploration_rate = self.exploration_rate
def enable_test_mode(self):
self.test_mode = True
self.learning.exploration_rate = 0
class BehaviorLearningGhostAgent(GhostAgent):
def __init__(self, agent_id, ally_ids, enemy_ids):
super(BehaviorLearningGhostAgent, self).__init__(agent_id, ally_ids, enemy_ids)
self.features = [features.FoodDistanceFeature()]
for enemy_id in enemy_ids:
self.features.append(features.EnemyDistanceFeature(enemy_id))
for id_ in [agent_id] + ally_ids + enemy_ids:
self.features.append(features.FragileAgentFeature(id_))
self.behaviors = [behaviors.FleeBehavior(), behaviors.SeekBehavior(),
behaviors.PursueBehavior()]
self.K = 1.0 # Learning rate
self.exploration_rate = 0.1
self.learning = learning.QLearningWithApproximation(learning_rate=0.1,
discount_factor=0.9, actions=self.behaviors, features=self.features,
exploration_rate=self.exploration_rate)
self.previous_behavior = self.behaviors[0]
self.behavior_count = {}
self.reset_behavior_count()
self.test_mode = False
def reset_behavior_count(self):
for behavior in self.behaviors:
self.behavior_count[str(behavior)] = 0
def get_policy(self):
return self.learning.get_weights()
def set_policy(self, weights):
self.learning.set_weights(weights)
def choose_action(self, state, action, reward, legal_actions, test):
if test:
self.enable_test_mode()
else:
self.enable_learn_mode()
if not self.test_mode:
self.learning.learning_rate = self.K/(self.K + state.iteration)
self.learning.learn(state, self.previous_behavior, reward)
behavior = self.learning.act(state)
self.previous_behavior = behavior
suggested_action = behavior(state, legal_actions)
self.behavior_count[str(behavior)] += 1
if suggested_action in legal_actions:
return suggested_action
elif legal_actions == []:
return 'Stop'
else:
return random.choice(legal_actions)
def enable_learn_mode(self):
self.test_mode = False
self.learning.exploration_rate = self.exploration_rate
def enable_test_mode(self):
self.test_mode = True
self.learning.exploration_rate = 0