forked from pololu/vl53l1x-arduino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVL53L1X.cpp
900 lines (717 loc) · 28.2 KB
/
VL53L1X.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
// Most of the functionality of this library is based on the VL53L1X API
// provided by ST (STSW-IMG007), and some of the explanatory comments are quoted
// or paraphrased from the API source code, API user manual (UM2356), and
// VL53L1X datasheet.
#include "VL53L1X.h"
// Constructors ////////////////////////////////////////////////////////////////
VL53L1X::VL53L1X()
#if !defined(NO_GLOBAL_INSTANCES) && !defined(NO_GLOBAL_TWOWIRE)
: bus(&Wire)
#else
: bus(nullptr)
#endif
, address(AddressDefault)
, io_timeout(0) // no timeout
, did_timeout(false)
, calibrated(false)
, saved_vhv_init(0)
, saved_vhv_timeout(0)
, distance_mode(Unknown)
{
}
// Public Methods //////////////////////////////////////////////////////////////
void VL53L1X::setAddress(uint8_t new_addr)
{
writeReg(I2C_SLAVE__DEVICE_ADDRESS, new_addr & 0x7F);
address = new_addr;
}
// Initialize sensor using settings taken mostly from VL53L1_DataInit() and
// VL53L1_StaticInit().
// If io_2v8 (optional) is true or not given, the sensor is configured for 2V8
// mode.
bool VL53L1X::init(bool io_2v8)
{
// check model ID and module type registers (values specified in datasheet)
if (readReg16Bit(IDENTIFICATION__MODEL_ID) != 0xEACC) { return false; }
// VL53L1_software_reset() begin
writeReg(SOFT_RESET, 0x00);
delayMicroseconds(100);
writeReg(SOFT_RESET, 0x01);
// give it some time to boot; otherwise the sensor NACKs during the readReg()
// call below and the Arduino 101 doesn't seem to handle that well
delay(1);
// VL53L1_poll_for_boot_completion() begin
startTimeout();
// check last_status in case we still get a NACK to try to deal with it correctly
while ((readReg(FIRMWARE__SYSTEM_STATUS) & 0x01) == 0 || last_status != 0)
{
if (checkTimeoutExpired())
{
did_timeout = true;
return false;
}
}
// VL53L1_poll_for_boot_completion() end
// VL53L1_software_reset() end
// VL53L1_DataInit() begin
// sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if necessary
if (io_2v8)
{
writeReg(PAD_I2C_HV__EXTSUP_CONFIG,
readReg(PAD_I2C_HV__EXTSUP_CONFIG) | 0x01);
}
// store oscillator info for later use
fast_osc_frequency = readReg16Bit(OSC_MEASURED__FAST_OSC__FREQUENCY);
osc_calibrate_val = readReg16Bit(RESULT__OSC_CALIBRATE_VAL);
// VL53L1_DataInit() end
// VL53L1_StaticInit() begin
// Note that the API does not actually apply the configuration settings below
// when VL53L1_StaticInit() is called: it keeps a copy of the sensor's
// register contents in memory and doesn't actually write them until a
// measurement is started. Writing the configuration here means we don't have
// to keep it all in memory and avoids a lot of redundant writes later.
// the API sets the preset mode to LOWPOWER_AUTONOMOUS here:
// VL53L1_set_preset_mode() begin
// VL53L1_preset_mode_standard_ranging() begin
// values labeled "tuning parm default" are from vl53l1_tuning_parm_defaults.h
// (API uses these in VL53L1_init_tuning_parm_storage_struct())
// static config
// API resets PAD_I2C_HV__EXTSUP_CONFIG here, but maybe we don't want to do
// that? (seems like it would disable 2V8 mode)
writeReg16Bit(DSS_CONFIG__TARGET_TOTAL_RATE_MCPS, TargetRate); // should already be this value after reset
writeReg(GPIO__TIO_HV_STATUS, 0x02);
writeReg(SIGMA_ESTIMATOR__EFFECTIVE_PULSE_WIDTH_NS, 8); // tuning parm default
writeReg(SIGMA_ESTIMATOR__EFFECTIVE_AMBIENT_WIDTH_NS, 16); // tuning parm default
writeReg(ALGO__CROSSTALK_COMPENSATION_VALID_HEIGHT_MM, 0x01);
writeReg(ALGO__RANGE_IGNORE_VALID_HEIGHT_MM, 0xFF);
writeReg(ALGO__RANGE_MIN_CLIP, 0); // tuning parm default
writeReg(ALGO__CONSISTENCY_CHECK__TOLERANCE, 2); // tuning parm default
// general config
writeReg16Bit(SYSTEM__THRESH_RATE_HIGH, 0x0000);
writeReg16Bit(SYSTEM__THRESH_RATE_LOW, 0x0000);
writeReg(DSS_CONFIG__APERTURE_ATTENUATION, 0x38);
// timing config
// most of these settings will be determined later by distance and timing
// budget configuration
writeReg16Bit(RANGE_CONFIG__SIGMA_THRESH, 360); // tuning parm default
writeReg16Bit(RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS, 192); // tuning parm default
// dynamic config
writeReg(SYSTEM__GROUPED_PARAMETER_HOLD_0, 0x01);
writeReg(SYSTEM__GROUPED_PARAMETER_HOLD_1, 0x01);
writeReg(SD_CONFIG__QUANTIFIER, 2); // tuning parm default
// VL53L1_preset_mode_standard_ranging() end
// from VL53L1_preset_mode_timed_ranging_*
// GPH is 0 after reset, but writing GPH0 and GPH1 above seem to set GPH to 1,
// and things don't seem to work if we don't set GPH back to 0 (which the API
// does here).
writeReg(SYSTEM__GROUPED_PARAMETER_HOLD, 0x00);
writeReg(SYSTEM__SEED_CONFIG, 1); // tuning parm default
// from VL53L1_config_low_power_auto_mode
writeReg(SYSTEM__SEQUENCE_CONFIG, 0x8B); // VHV, PHASECAL, DSS1, RANGE
writeReg16Bit(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, 200 << 8);
writeReg(DSS_CONFIG__ROI_MODE_CONTROL, 2); // REQUESTED_EFFFECTIVE_SPADS
// VL53L1_set_preset_mode() end
// default to long range, 50 ms timing budget
// note that this is different than what the API defaults to
setDistanceMode(Long);
setMeasurementTimingBudget(50000);
// VL53L1_StaticInit() end
// the API triggers this change in VL53L1_init_and_start_range() once a
// measurement is started; assumes MM1 and MM2 are disabled
writeReg16Bit(ALGO__PART_TO_PART_RANGE_OFFSET_MM,
readReg16Bit(MM_CONFIG__OUTER_OFFSET_MM) * 4);
return true;
}
// Write an 8-bit register
void VL53L1X::writeReg(uint16_t reg, uint8_t value)
{
bus->beginTransmission(address);
bus->write((reg >> 8) & 0xFF); // reg high byte
bus->write( reg & 0xFF); // reg low byte
bus->write(value);
last_status = bus->endTransmission();
}
// Write a 16-bit register
void VL53L1X::writeReg16Bit(uint16_t reg, uint16_t value)
{
bus->beginTransmission(address);
bus->write((reg >> 8) & 0xFF); // reg high byte
bus->write( reg & 0xFF); // reg low byte
bus->write((value >> 8) & 0xFF); // value high byte
bus->write( value & 0xFF); // value low byte
last_status = bus->endTransmission();
}
// Write a 32-bit register
void VL53L1X::writeReg32Bit(uint16_t reg, uint32_t value)
{
bus->beginTransmission(address);
bus->write((reg >> 8) & 0xFF); // reg high byte
bus->write( reg & 0xFF); // reg low byte
bus->write((value >> 24) & 0xFF); // value highest byte
bus->write((value >> 16) & 0xFF);
bus->write((value >> 8) & 0xFF);
bus->write( value & 0xFF); // value lowest byte
last_status = bus->endTransmission();
}
// Read an 8-bit register
uint8_t VL53L1X::readReg(regAddr reg)
{
uint8_t value;
bus->beginTransmission(address);
bus->write((reg >> 8) & 0xFF); // reg high byte
bus->write( reg & 0xFF); // reg low byte
last_status = bus->endTransmission();
bus->requestFrom(address, (uint8_t)1);
value = bus->read();
return value;
}
// Read a 16-bit register
uint16_t VL53L1X::readReg16Bit(uint16_t reg)
{
uint16_t value;
bus->beginTransmission(address);
bus->write((reg >> 8) & 0xFF); // reg high byte
bus->write( reg & 0xFF); // reg low byte
last_status = bus->endTransmission();
bus->requestFrom(address, (uint8_t)2);
value = (uint16_t)bus->read() << 8; // value high byte
value |= bus->read(); // value low byte
return value;
}
// Read a 32-bit register
uint32_t VL53L1X::readReg32Bit(uint16_t reg)
{
uint32_t value;
bus->beginTransmission(address);
bus->write((reg >> 8) & 0xFF); // reg high byte
bus->write( reg & 0xFF); // reg low byte
last_status = bus->endTransmission();
bus->requestFrom(address, (uint8_t)4);
value = (uint32_t)bus->read() << 24; // value highest byte
value |= (uint32_t)bus->read() << 16;
value |= (uint16_t)bus->read() << 8;
value |= bus->read(); // value lowest byte
return value;
}
// set distance mode to Short, Medium, or Long
// based on VL53L1_SetDistanceMode()
bool VL53L1X::setDistanceMode(DistanceMode mode)
{
// save existing timing budget
uint32_t budget_us = getMeasurementTimingBudget();
switch (mode)
{
case Short:
// from VL53L1_preset_mode_standard_ranging_short_range()
// timing config
writeReg(RANGE_CONFIG__VCSEL_PERIOD_A, 0x07);
writeReg(RANGE_CONFIG__VCSEL_PERIOD_B, 0x05);
writeReg(RANGE_CONFIG__VALID_PHASE_HIGH, 0x38);
// dynamic config
writeReg(SD_CONFIG__WOI_SD0, 0x07);
writeReg(SD_CONFIG__WOI_SD1, 0x05);
writeReg(SD_CONFIG__INITIAL_PHASE_SD0, 6); // tuning parm default
writeReg(SD_CONFIG__INITIAL_PHASE_SD1, 6); // tuning parm default
break;
case Medium:
// from VL53L1_preset_mode_standard_ranging()
// timing config
writeReg(RANGE_CONFIG__VCSEL_PERIOD_A, 0x0B);
writeReg(RANGE_CONFIG__VCSEL_PERIOD_B, 0x09);
writeReg(RANGE_CONFIG__VALID_PHASE_HIGH, 0x78);
// dynamic config
writeReg(SD_CONFIG__WOI_SD0, 0x0B);
writeReg(SD_CONFIG__WOI_SD1, 0x09);
writeReg(SD_CONFIG__INITIAL_PHASE_SD0, 10); // tuning parm default
writeReg(SD_CONFIG__INITIAL_PHASE_SD1, 10); // tuning parm default
break;
case Long: // long
// from VL53L1_preset_mode_standard_ranging_long_range()
// timing config
writeReg(RANGE_CONFIG__VCSEL_PERIOD_A, 0x0F);
writeReg(RANGE_CONFIG__VCSEL_PERIOD_B, 0x0D);
writeReg(RANGE_CONFIG__VALID_PHASE_HIGH, 0xB8);
// dynamic config
writeReg(SD_CONFIG__WOI_SD0, 0x0F);
writeReg(SD_CONFIG__WOI_SD1, 0x0D);
writeReg(SD_CONFIG__INITIAL_PHASE_SD0, 14); // tuning parm default
writeReg(SD_CONFIG__INITIAL_PHASE_SD1, 14); // tuning parm default
break;
default:
// unrecognized mode - do nothing
return false;
}
// reapply timing budget
setMeasurementTimingBudget(budget_us);
// save mode so it can be returned by getDistanceMode()
distance_mode = mode;
return true;
}
// Set the measurement timing budget in microseconds, which is the time allowed
// for one measurement. A longer timing budget allows for more accurate
// measurements.
// based on VL53L1_SetMeasurementTimingBudgetMicroSeconds()
bool VL53L1X::setMeasurementTimingBudget(uint32_t budget_us)
{
// assumes PresetMode is LOWPOWER_AUTONOMOUS
if (budget_us <= TimingGuard) { return false; }
uint32_t range_config_timeout_us = budget_us -= TimingGuard;
if (range_config_timeout_us > 1100000) { return false; } // FDA_MAX_TIMING_BUDGET_US * 2
range_config_timeout_us /= 2;
// VL53L1_calc_timeout_register_values() begin
uint32_t macro_period_us;
// "Update Macro Period for Range A VCSEL Period"
macro_period_us = calcMacroPeriod(readReg(RANGE_CONFIG__VCSEL_PERIOD_A));
// "Update Phase timeout - uses Timing A"
// Timeout of 1000 is tuning parm default (TIMED_PHASECAL_CONFIG_TIMEOUT_US_DEFAULT)
// via VL53L1_get_preset_mode_timing_cfg().
uint32_t phasecal_timeout_mclks = timeoutMicrosecondsToMclks(1000, macro_period_us);
if (phasecal_timeout_mclks > 0xFF) { phasecal_timeout_mclks = 0xFF; }
writeReg(PHASECAL_CONFIG__TIMEOUT_MACROP, phasecal_timeout_mclks);
// "Update MM Timing A timeout"
// Timeout of 1 is tuning parm default (LOWPOWERAUTO_MM_CONFIG_TIMEOUT_US_DEFAULT)
// via VL53L1_get_preset_mode_timing_cfg(). With the API, the register
// actually ends up with a slightly different value because it gets assigned,
// retrieved, recalculated with a different macro period, and reassigned,
// but it probably doesn't matter because it seems like the MM ("mode
// mitigation"?) sequence steps are disabled in low power auto mode anyway.
writeReg16Bit(MM_CONFIG__TIMEOUT_MACROP_A, encodeTimeout(
timeoutMicrosecondsToMclks(1, macro_period_us)));
// "Update Range Timing A timeout"
writeReg16Bit(RANGE_CONFIG__TIMEOUT_MACROP_A, encodeTimeout(
timeoutMicrosecondsToMclks(range_config_timeout_us, macro_period_us)));
// "Update Macro Period for Range B VCSEL Period"
macro_period_us = calcMacroPeriod(readReg(RANGE_CONFIG__VCSEL_PERIOD_B));
// "Update MM Timing B timeout"
// (See earlier comment about MM Timing A timeout.)
writeReg16Bit(MM_CONFIG__TIMEOUT_MACROP_B, encodeTimeout(
timeoutMicrosecondsToMclks(1, macro_period_us)));
// "Update Range Timing B timeout"
writeReg16Bit(RANGE_CONFIG__TIMEOUT_MACROP_B, encodeTimeout(
timeoutMicrosecondsToMclks(range_config_timeout_us, macro_period_us)));
// VL53L1_calc_timeout_register_values() end
return true;
}
// Get the measurement timing budget in microseconds
// based on VL53L1_SetMeasurementTimingBudgetMicroSeconds()
uint32_t VL53L1X::getMeasurementTimingBudget()
{
// assumes PresetMode is LOWPOWER_AUTONOMOUS and these sequence steps are
// enabled: VHV, PHASECAL, DSS1, RANGE
// VL53L1_get_timeouts_us() begin
// "Update Macro Period for Range A VCSEL Period"
uint32_t macro_period_us = calcMacroPeriod(readReg(RANGE_CONFIG__VCSEL_PERIOD_A));
// "Get Range Timing A timeout"
uint32_t range_config_timeout_us = timeoutMclksToMicroseconds(decodeTimeout(
readReg16Bit(RANGE_CONFIG__TIMEOUT_MACROP_A)), macro_period_us);
// VL53L1_get_timeouts_us() end
return 2 * range_config_timeout_us + TimingGuard;
}
// Set the width and height of the region of interest
// based on VL53L1X_SetROI() from STSW-IMG009 Ultra Lite Driver
//
// ST user manual UM2555 explains ROI selection in detail, so we recommend
// reading that document carefully.
void VL53L1X::setROISize(uint8_t width, uint8_t height)
{
if ( width > 16) { width = 16; }
if (height > 16) { height = 16; }
// Force ROI to be centered if width or height > 10, matching what the ULD API
// does. (This can probably be overridden by calling setROICenter()
// afterwards.)
if (width > 10 || height > 10)
{
writeReg(ROI_CONFIG__USER_ROI_CENTRE_SPAD, 199);
}
writeReg(ROI_CONFIG__USER_ROI_REQUESTED_GLOBAL_XY_SIZE,
(height - 1) << 4 | (width - 1));
}
// Get the width and height of the region of interest (ROI)
// based on VL53L1X_GetROI_XY() from STSW-IMG009 Ultra Lite Driver
void VL53L1X::getROISize(uint8_t * width, uint8_t * height)
{
uint8_t reg_val = readReg(ROI_CONFIG__USER_ROI_REQUESTED_GLOBAL_XY_SIZE);
*width = (reg_val & 0xF) + 1;
*height = (reg_val >> 4) + 1;
}
// Set the center SPAD of the region of interest (ROI)
// based on VL53L1X_SetROICenter() from STSW-IMG009 Ultra Lite Driver
//
// ST user manual UM2555 explains ROI selection in detail, so we recommend
// reading that document carefully. Here is a table of SPAD locations from
// UM2555 (199 is the default/center):
//
// 128,136,144,152,160,168,176,184, 192,200,208,216,224,232,240,248
// 129,137,145,153,161,169,177,185, 193,201,209,217,225,233,241,249
// 130,138,146,154,162,170,178,186, 194,202,210,218,226,234,242,250
// 131,139,147,155,163,171,179,187, 195,203,211,219,227,235,243,251
// 132,140,148,156,164,172,180,188, 196,204,212,220,228,236,244,252
// 133,141,149,157,165,173,181,189, 197,205,213,221,229,237,245,253
// 134,142,150,158,166,174,182,190, 198,206,214,222,230,238,246,254
// 135,143,151,159,167,175,183,191, 199,207,215,223,231,239,247,255
//
// 127,119,111,103, 95, 87, 79, 71, 63, 55, 47, 39, 31, 23, 15, 7
// 126,118,110,102, 94, 86, 78, 70, 62, 54, 46, 38, 30, 22, 14, 6
// 125,117,109,101, 93, 85, 77, 69, 61, 53, 45, 37, 29, 21, 13, 5
// 124,116,108,100, 92, 84, 76, 68, 60, 52, 44, 36, 28, 20, 12, 4
// 123,115,107, 99, 91, 83, 75, 67, 59, 51, 43, 35, 27, 19, 11, 3
// 122,114,106, 98, 90, 82, 74, 66, 58, 50, 42, 34, 26, 18, 10, 2
// 121,113,105, 97, 89, 81, 73, 65, 57, 49, 41, 33, 25, 17, 9, 1
// 120,112,104, 96, 88, 80, 72, 64, 56, 48, 40, 32, 24, 16, 8, 0 <- Pin 1
//
// This table is oriented as if looking into the front of the sensor (or top of
// the chip). SPAD 0 is closest to pin 1 of the VL53L1X, which is the corner
// closest to the VDD pin on the Pololu VL53L1X carrier board:
//
// +--------------+
// | O| GPIO1
// | |
// | O|
// | 128 248 |
// |+----------+ O|
// ||+--+ +--+| |
// ||| | | || O|
// ||+--+ +--+| |
// |+----------+ O|
// | 120 0 |
// | O|
// | |
// | O| VDD
// +--------------+
//
// However, note that the lens inside the VL53L1X inverts the image it sees
// (like the way a camera works). So for example, to shift the sensor's FOV to
// sense objects toward the upper left, you should pick a center SPAD in the
// lower right.
void VL53L1X::setROICenter(uint8_t spadNumber)
{
writeReg(ROI_CONFIG__USER_ROI_CENTRE_SPAD, spadNumber);
}
// Get the center SPAD of the region of interest
// based on VL53L1X_GetROICenter() from STSW-IMG009 Ultra Lite Driver
uint8_t VL53L1X::getROICenter()
{
return readReg(ROI_CONFIG__USER_ROI_CENTRE_SPAD);
}
// Start continuous ranging measurements, with the given inter-measurement
// period in milliseconds determining how often the sensor takes a measurement.
void VL53L1X::startContinuous(uint32_t period_ms)
{
// from VL53L1_set_inter_measurement_period_ms()
writeReg32Bit(SYSTEM__INTERMEASUREMENT_PERIOD, period_ms * osc_calibrate_val);
writeReg(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range
writeReg(SYSTEM__MODE_START, 0x40); // mode_range__timed
}
// Stop continuous measurements
// based on VL53L1_stop_range()
void VL53L1X::stopContinuous()
{
writeReg(SYSTEM__MODE_START, 0x80); // mode_range__abort
// VL53L1_low_power_auto_data_stop_range() begin
calibrated = false;
// "restore vhv configs"
if (saved_vhv_init != 0)
{
writeReg(VHV_CONFIG__INIT, saved_vhv_init);
}
if (saved_vhv_timeout != 0)
{
writeReg(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND, saved_vhv_timeout);
}
// "remove phasecal override"
writeReg(PHASECAL_CONFIG__OVERRIDE, 0x00);
// VL53L1_low_power_auto_data_stop_range() end
}
// Returns a range reading in millimeters when continuous mode is active. If
// blocking is true (the default), this function waits for a new measurement to
// be available. If blocking is false, it will try to return data immediately.
// (readSingle() also calls this function after starting a single-shot range
// measurement)
uint16_t VL53L1X::read(bool blocking)
{
if (blocking)
{
startTimeout();
while (!dataReady())
{
if (checkTimeoutExpired())
{
did_timeout = true;
return 0;
}
}
}
readResults();
if (!calibrated)
{
setupManualCalibration();
calibrated = true;
}
updateDSS();
getRangingData();
writeReg(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range
return ranging_data.range_mm;
}
// Starts a single-shot range measurement. If blocking is true (the default),
// this function waits for the measurement to finish and returns the reading.
// Otherwise, it returns 0 immediately.
uint16_t VL53L1X::readSingle(bool blocking)
{
writeReg(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range
writeReg(SYSTEM__MODE_START, 0x10); // mode_range__single_shot
if (blocking)
{
return read(true);
}
else
{
return 0;
}
}
// convert a RangeStatus to a readable string
// Note that on an AVR, these strings are stored in RAM (dynamic memory), which
// makes working with them easier but uses up 200+ bytes of RAM (many AVR-based
// Arduinos only have about 2000 bytes of RAM). You can avoid this memory usage
// if you do not call this function in your sketch.
const char * VL53L1X::rangeStatusToString(RangeStatus status)
{
switch (status)
{
case RangeValid:
return "range valid";
case SigmaFail:
return "sigma fail";
case SignalFail:
return "signal fail";
case RangeValidMinRangeClipped:
return "range valid, min range clipped";
case OutOfBoundsFail:
return "out of bounds fail";
case HardwareFail:
return "hardware fail";
case RangeValidNoWrapCheckFail:
return "range valid, no wrap check fail";
case WrapTargetFail:
return "wrap target fail";
case XtalkSignalFail:
return "xtalk signal fail";
case SynchronizationInt:
return "synchronization int";
case MinRangeFail:
return "min range fail";
case None:
return "no update";
default:
return "unknown status";
}
}
// Did a timeout occur in one of the read functions since the last call to
// timeoutOccurred()?
bool VL53L1X::timeoutOccurred()
{
bool tmp = did_timeout;
did_timeout = false;
return tmp;
}
// Private Methods /////////////////////////////////////////////////////////////
// "Setup ranges after the first one in low power auto mode by turning off
// FW calibration steps and programming static values"
// based on VL53L1_low_power_auto_setup_manual_calibration()
void VL53L1X::setupManualCalibration()
{
// "save original vhv configs"
saved_vhv_init = readReg(VHV_CONFIG__INIT);
saved_vhv_timeout = readReg(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND);
// "disable VHV init"
writeReg(VHV_CONFIG__INIT, saved_vhv_init & 0x7F);
// "set loop bound to tuning param"
writeReg(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND,
(saved_vhv_timeout & 0x03) + (3 << 2)); // tuning parm default (LOWPOWERAUTO_VHV_LOOP_BOUND_DEFAULT)
// "override phasecal"
writeReg(PHASECAL_CONFIG__OVERRIDE, 0x01);
writeReg(CAL_CONFIG__VCSEL_START, readReg(PHASECAL_RESULT__VCSEL_START));
}
// read measurement results into buffer
void VL53L1X::readResults()
{
bus->beginTransmission(address);
bus->write((RESULT__RANGE_STATUS >> 8) & 0xFF); // reg high byte
bus->write( RESULT__RANGE_STATUS & 0xFF); // reg low byte
last_status = bus->endTransmission();
bus->requestFrom(address, (uint8_t)17);
results.range_status = bus->read();
bus->read(); // report_status: not used
results.stream_count = bus->read();
results.dss_actual_effective_spads_sd0 = (uint16_t)bus->read() << 8; // high byte
results.dss_actual_effective_spads_sd0 |= bus->read(); // low byte
bus->read(); // peak_signal_count_rate_mcps_sd0: not used
bus->read();
results.ambient_count_rate_mcps_sd0 = (uint16_t)bus->read() << 8; // high byte
results.ambient_count_rate_mcps_sd0 |= bus->read(); // low byte
bus->read(); // sigma_sd0: not used
bus->read();
bus->read(); // phase_sd0: not used
bus->read();
results.final_crosstalk_corrected_range_mm_sd0 = (uint16_t)bus->read() << 8; // high byte
results.final_crosstalk_corrected_range_mm_sd0 |= bus->read(); // low byte
results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0 = (uint16_t)bus->read() << 8; // high byte
results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0 |= bus->read(); // low byte
}
// perform Dynamic SPAD Selection calculation/update
// based on VL53L1_low_power_auto_update_DSS()
void VL53L1X::updateDSS()
{
uint16_t spadCount = results.dss_actual_effective_spads_sd0;
if (spadCount != 0)
{
// "Calc total rate per spad"
uint32_t totalRatePerSpad =
(uint32_t)results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0 +
results.ambient_count_rate_mcps_sd0;
// "clip to 16 bits"
if (totalRatePerSpad > 0xFFFF) { totalRatePerSpad = 0xFFFF; }
// "shift up to take advantage of 32 bits"
totalRatePerSpad <<= 16;
totalRatePerSpad /= spadCount;
if (totalRatePerSpad != 0)
{
// "get the target rate and shift up by 16"
uint32_t requiredSpads = ((uint32_t)TargetRate << 16) / totalRatePerSpad;
// "clip to 16 bit"
if (requiredSpads > 0xFFFF) { requiredSpads = 0xFFFF; }
// "override DSS config"
writeReg16Bit(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, requiredSpads);
// DSS_CONFIG__ROI_MODE_CONTROL should already be set to REQUESTED_EFFFECTIVE_SPADS
return;
}
}
// If we reached this point, it means something above would have resulted in a
// divide by zero.
// "We want to gracefully set a spad target, not just exit with an error"
// "set target to mid point"
writeReg16Bit(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, 0x8000);
}
// get range, status, rates from results buffer
// based on VL53L1_GetRangingMeasurementData()
void VL53L1X::getRangingData()
{
// VL53L1_copy_sys_and_core_results_to_range_results() begin
uint16_t range = results.final_crosstalk_corrected_range_mm_sd0;
// "apply correction gain"
// gain factor of 2011 is tuning parm default (VL53L1_TUNINGPARM_LITE_RANGING_GAIN_FACTOR_DEFAULT)
// Basically, this appears to scale the result by 2011/2048, or about 98%
// (with the 1024 added for proper rounding).
ranging_data.range_mm = ((uint32_t)range * 2011 + 0x0400) / 0x0800;
// VL53L1_copy_sys_and_core_results_to_range_results() end
// set range_status in ranging_data based on value of RESULT__RANGE_STATUS register
// mostly based on ConvertStatusLite()
switch(results.range_status)
{
case 17: // MULTCLIPFAIL
case 2: // VCSELWATCHDOGTESTFAILURE
case 1: // VCSELCONTINUITYTESTFAILURE
case 3: // NOVHVVALUEFOUND
// from SetSimpleData()
ranging_data.range_status = HardwareFail;
break;
case 13: // USERROICLIP
// from SetSimpleData()
ranging_data.range_status = MinRangeFail;
break;
case 18: // GPHSTREAMCOUNT0READY
ranging_data.range_status = SynchronizationInt;
break;
case 5: // RANGEPHASECHECK
ranging_data.range_status = OutOfBoundsFail;
break;
case 4: // MSRCNOTARGET
ranging_data.range_status = SignalFail;
break;
case 6: // SIGMATHRESHOLDCHECK
ranging_data.range_status = SigmaFail;
break;
case 7: // PHASECONSISTENCY
ranging_data.range_status = WrapTargetFail;
break;
case 12: // RANGEIGNORETHRESHOLD
ranging_data.range_status = XtalkSignalFail;
break;
case 8: // MINCLIP
ranging_data.range_status = RangeValidMinRangeClipped;
break;
case 9: // RANGECOMPLETE
// from VL53L1_copy_sys_and_core_results_to_range_results()
if (results.stream_count == 0)
{
ranging_data.range_status = RangeValidNoWrapCheckFail;
}
else
{
ranging_data.range_status = RangeValid;
}
break;
default:
ranging_data.range_status = None;
}
// from SetSimpleData()
ranging_data.peak_signal_count_rate_MCPS =
countRateFixedToFloat(results.peak_signal_count_rate_crosstalk_corrected_mcps_sd0);
ranging_data.ambient_count_rate_MCPS =
countRateFixedToFloat(results.ambient_count_rate_mcps_sd0);
}
// Decode sequence step timeout in MCLKs from register value
// based on VL53L1_decode_timeout()
uint32_t VL53L1X::decodeTimeout(uint16_t reg_val)
{
return ((uint32_t)(reg_val & 0xFF) << (reg_val >> 8)) + 1;
}
// Encode sequence step timeout register value from timeout in MCLKs
// based on VL53L1_encode_timeout()
uint16_t VL53L1X::encodeTimeout(uint32_t timeout_mclks)
{
// encoded format: "(LSByte * 2^MSByte) + 1"
uint32_t ls_byte = 0;
uint16_t ms_byte = 0;
if (timeout_mclks > 0)
{
ls_byte = timeout_mclks - 1;
while ((ls_byte & 0xFFFFFF00) > 0)
{
ls_byte >>= 1;
ms_byte++;
}
return (ms_byte << 8) | (ls_byte & 0xFF);
}
else { return 0; }
}
// Convert sequence step timeout from macro periods to microseconds with given
// macro period in microseconds (12.12 format)
// based on VL53L1_calc_timeout_us()
uint32_t VL53L1X::timeoutMclksToMicroseconds(uint32_t timeout_mclks, uint32_t macro_period_us)
{
return ((uint64_t)timeout_mclks * macro_period_us + 0x800) >> 12;
}
// Convert sequence step timeout from microseconds to macro periods with given
// macro period in microseconds (12.12 format)
// based on VL53L1_calc_timeout_mclks()
uint32_t VL53L1X::timeoutMicrosecondsToMclks(uint32_t timeout_us, uint32_t macro_period_us)
{
return (((uint32_t)timeout_us << 12) + (macro_period_us >> 1)) / macro_period_us;
}
// Calculate macro period in microseconds (12.12 format) with given VCSEL period
// assumes fast_osc_frequency has been read and stored
// based on VL53L1_calc_macro_period_us()
uint32_t VL53L1X::calcMacroPeriod(uint8_t vcsel_period)
{
// from VL53L1_calc_pll_period_us()
// fast osc frequency in 4.12 format; PLL period in 0.24 format
uint32_t pll_period_us = ((uint32_t)0x01 << 30) / fast_osc_frequency;
// from VL53L1_decode_vcsel_period()
uint8_t vcsel_period_pclks = (vcsel_period + 1) << 1;
// VL53L1_MACRO_PERIOD_VCSEL_PERIODS = 2304
uint32_t macro_period_us = (uint32_t)2304 * pll_period_us;
macro_period_us >>= 6;
macro_period_us *= vcsel_period_pclks;
macro_period_us >>= 6;
return macro_period_us;
}