-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathprovider.py
146 lines (124 loc) · 5.61 KB
/
provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
""" Based on point net data
downladed from: https://github.com/charlesq34/pointnet
"""
import os
import sys
import numpy as np
import h5py
from abc import ABCMeta,abstractmethod
class Provider:
def getDataFiles(self,file):
pass
def shuffle_data(self,data, labels):
""" Shuffle data and labels.
Input:
data: B,N,... numpy array
label: B,... numpy array
Return:
shuffled data, label and shuffle indices
"""
idx = np.arange(len(labels))
np.random.shuffle(idx)
return data[idx, ...], labels[idx], idx
def translate_point_cloud(self,batch_data):
translated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
xyz1 = np.random.uniform(low=2. / 3., high=3. / 2., size=[3])
xyz2 = np.random.uniform(low=-0.2,high=0.2,size=[3])
shape_pc = batch_data[k, ...]
translated_data[k, ...] = np.add(np.multiply(shape_pc, xyz1), xyz2)
return translated_data
def rotate_point_cloud_by_angle(self,batch_data, rotation_angle):
""" Rotate the point cloud along up direction with certain angle.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
# rotation_angle = np.random.uniform() * 2 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
shape_pc = batch_data[k, ...]
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
return rotated_data
def rotate_point_cloud(self,batch_data):
""" Randomly rotate the point clouds to augument the dataset
rotation is per shape based along up direction
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
rotation_angle = np.random.uniform() * 2 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
shape_pc = batch_data[k, ...]
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
return rotated_data
def jitter_point_cloud(self,batch_data, sigma=0.01, clip=0.05):
""" Randomly jitter points. jittering is per point.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, jittered batch of point clouds
"""
B, N, C = batch_data.shape
assert (clip > 0)
jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1 * clip, clip)
jittered_data += batch_data
return jittered_data
class ClassificationProvider(Provider):
def __init__(self,download = True):
self.BASE_DIR = '.'
sys.path.append(self.BASE_DIR)
DATA_DIR = os.path.join(self.BASE_DIR, 'data')
if download and not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
if download and not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')):
www = 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip'
zipfile = os.path.basename(www)
os.system('wget --no-check-certificate %s; unzip %s' % (www, zipfile))
os.system('mv %s %s' % (zipfile[:-4], DATA_DIR))
os.system('rm %s' % (zipfile))
self.train_files = os.path.join(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048'),'train_files.txt')
self.test_files = os.path.join(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048'),'test_files.txt')
def getTestDataFiles(self):
return self.getDataFiles(self.test_files)
def getTrainDataFiles(self):
return self.getDataFiles(self.train_files)
def getDataFiles(self,list_filename):
return [line.rstrip() for line in open(list_filename)]
def load_h5(self,h5_filename):
f = h5py.File(h5_filename)
data = f['data'][:]
label = f['label'][:]
return (data, label)
def loadDataFile(self,filename):
return self.load_h5(os.path.join(self.BASE_DIR,filename))
def read_off(file):
if 'OFF' != file.readline().strip():
raise ('Not a valid OFF header')
n_verts, n_faces, n_dontknow = tuple([int(s) for s in file.readline().strip().split(' ')])
verts = []
for i_vert in range(n_verts):
verts.append([float(s) for s in file.readline().strip().split(' ')])
faces = []
for i_face in range(n_faces):
faces.append([int(s) for s in file.readline().strip().split(' ')][1:])
return verts, faces
def load_h5_data_label_seg(h5_filename):
f = h5py.File(h5_filename)
data = f['data'][:]
label = f['label'][:]
seg = f['pid'][:]
return (data, label, seg)