-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathCCU_plots.R
139 lines (108 loc) · 4.37 KB
/
CCU_plots.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
library('ggplot2')
library('reshape2')
library('Hmisc')
# Monte Carlo plot
mc = read.csv('MCsimulation1000iter20190416_nt.csv', sep = ';')
#mc <- mc[,-1] # remove pandas index...
mc <- mc[,sort(names(mc))]
head(mc)
names(mc)
dim(mc)
names(mc) <- c("CH[4]", "CO[DRM]", "CO[RWGS]",
"DMC[elec]", "DMC",
"DME","DMM","EtOH[elec]",
"FA[elec]","FA[hydro]","FT",
"MeOH","Polyols", 'X')
summary(mc)
# Remove DMC(elec) and FD as out of scale
mc <- mc[,c("CH[4]", "CO[DRM]", "CO[RWGS]", "DMC",
"DME","DMM","EtOH[elec]",
"FA[elec]","FA[hydro]",
"MeOH","Polyols", 'X')]
names(mc)
dim(mc)
head(mc)
mc_long <- melt(mc, id = c('X'))
mc_long <- mc_long[,-1]
mc_long$variable <- as.character(mc_long$variable)
mc_long <- mc_long[order(mc_long$variable),]
mc_long$variable <- factor(mc_long$variable)
head(mc_long)
tail(mc_long)
mc_long$variable <- factor(mc_long$variable, levels = c("Polyols", "FA[hydro]",
"DMC","MeOH","CO[RWGS]", "CO[DRM]", "DME",
"CH[4]", "EtOH[elec]","DMM", "FA[elec]"))
gmc <- ggplot(mc_long, aes(x = variable, y = value)) +
#geom_point()+
geom_jitter(color = "red", width = 0.1, alpha = 0.15)+
geom_boxplot(alpha = 0.01, outlier.shape = NA)+
#stat_summary(fun.data = mean_sdl, geom = "errorbar", color = "darkblue")+
stat_summary(fun.y=median, geom="point", size = 1)+
#stat_summary(fun.y=median, geom="text", aes(label = round(..y.., 2)), vjust = -1, size = 3) +
#stat_summary(fun.y=median, geom="point", shape = 6)+
theme_minimal()+
theme(text = element_text(size = 10),
#axis.text.x=element_text(angle = 90, vjust = 0.5),
#axis.text.x=element_blank(),
legend.position = "none",
panel.grid = element_blank(),
panel.background = element_rect(fill = "lightgrey"),
plot.margin = margin(0.5,0.5,0.5,0.5, "cm")
)
gmc + ylab("") + xlab("") + theme(
plot.title = element_text(hjust = 0.5))+
ggtitle(expression(paste("kg CO"[2], "-eq / kg captured CO"[2], " (near term scenario)")))+
scale_x_discrete(labels = parse(text = levels(mc_long$variable)))
# Now same for long term
# Monte Carlo plot
mc = read.csv('MCsimulation1000iter20190416_lt.csv', sep = ';')
#mc <- mc[,-1] # remove pandas index...
mc <- mc[,sort(names(mc))]
head(mc)
names(mc)
dim(mc)
names(mc) <- c("CH[4]", "CO[DRM]", "CO[RWGS]",
"DMC[elec]", "DMC",
"DME","DMM","EtOH[elec]",
"FA[elec]","FA[hydro]","FT",
"MeOH","Polyols", 'X')
summary(mc)
# Remove DMC(elec) and FD as out of scale
mc <- mc[,c("CH[4]", "CO[DRM]", "CO[RWGS]", "DMC",
"DME","DMM","EtOH[elec]",
"FA[elec]","FA[hydro]",
"MeOH","Polyols", 'X')]
names(mc)
dim(mc)
head(mc)
mc_long <- melt(mc, id = c('X'))
mc_long <- mc_long[,-1]
mc_long$variable <- as.character(mc_long$variable)
mc_long <- mc_long[order(mc_long$variable),]
mc_long$variable <- factor(mc_long$variable)
head(mc_long)
tail(mc_long)
mc_long$variable <- factor(mc_long$variable, levels = c("Polyols", "FA[hydro]",
"DMC","MeOH","CO[RWGS]", "CO[DRM]", "DME",
"CH[4]", "EtOH[elec]","DMM", "FA[elec]"))
gmc <- ggplot(mc_long, aes(x = variable, y = value)) +
#geom_point()+
geom_jitter(color = "red", width = 0.1, alpha = 0.15)+
geom_boxplot(alpha = 0.01, outlier.shape = NA)+
#stat_summary(fun.data = mean_sdl, geom = "errorbar", color = "darkblue")+
stat_summary(fun.y=median, geom="point", size = 1)+
#stat_summary(fun.y=median, geom="text", aes(label = round(..y.., 2)), vjust = -1, size = 3) +
#stat_summary(fun.y=median, geom="point", shape = 6)+
theme_minimal()+
theme(text = element_text(size = 10),
#axis.text.x=element_text(angle = 90, vjust = 0.5),
#axis.text.x=element_blank(),
legend.position = "none",
panel.grid = element_blank(),
panel.background = element_rect(fill = "lightgrey"),
plot.margin = margin(0.5,0.5,0.5,0.5, "cm")
)
gmc + ylab("") + xlab("") + theme(
plot.title = element_text(hjust = 0.5))+
ggtitle(expression(paste("kg CO"[2], "-eq / kg captured CO"[2], " (long term scenario)")))+
scale_x_discrete(labels = parse(text = levels(mc_long$variable)))