-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
174 lines (152 loc) · 6.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import random
from logging import getLogger, INFO, StreamHandler, FileHandler, Formatter
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
import sacrebleu
from models import *
from attn_models import *
class IWSLTDataset:
def __init__(self, src_path, tgt_path, src_wd2id=None, tgt_wd2id=None, max_length=None):
max_length = 2048 if max_length is None else max_length
self.src, self.tgt = [], []
with open(src_path, "r") as f:
src = [i.split() for i in f.readlines()]
with open(tgt_path, "r") as f:
tgt = [i.split() for i in f.readlines()]
self.src_wd2id, self.tgt_wd2id = (src_wd2id, tgt_wd2id) if src_wd2id is not None \
else self.create_vocab(src, tgt)
for s, t in zip(tqdm(src), tgt):
src_ids = []
tgt_ids =[]
# filter sentence whose length > max_length
if len(s) > max_length or len(t) > max_length:
continue
for src_wd in s:
src_ids.append(self.src_wd2id.get(src_wd, self.src_wd2id["<unk>"]))
for tgt_wd in t:
tgt_ids.append(self.tgt_wd2id.get(tgt_wd, self.tgt_wd2id["<unk>"]))
self.src.append(src_ids)
self.tgt.append(tgt_ids)
self.src = [[self.src_wd2id["<bos>"]]+ src + [self.src_wd2id["<eos>"]] for src in self.src]
self.tgt = [[self.tgt_wd2id["<bos>"]] + tgt + [self.tgt_wd2id["<eos>"]] for tgt in self.tgt]
data = sorted([(i,j) for i,j in zip(self.src, self.tgt)], key=lambda x:len(x[0]))
self.src, self.tgt = list(zip(*data))
def __len__(self):
return len(self.src)
def __getitem__(self, idx):
return self.src[idx], self.tgt[idx]
def create_vocab(self, src, tgt):
src_wd2id, tgt_wd2id = \
{"<pad>":0, "<bos>":1, "<eos>":2, "<unk>":3}, {"<pad>":0, "<bos>":1, "<eos>":2, "<unk>":3}
for s in src:
for src_wd in s:
if src_wd not in src_wd2id:
src_wd2id[src_wd] = len(src_wd2id)
for t in tgt:
for tgt_wd in t:
if tgt_wd not in tgt_wd2id:
tgt_wd2id[tgt_wd] = len(tgt_wd2id)
return src_wd2id, tgt_wd2id
class CollateFn:
def __init__(self, pad_token_id, is_train=True):
self.pad_token_id = pad_token_id
self.is_train = is_train
def __call__(self, batch):
if self.is_train:
srcs, tgts = list(zip(*batch))
else:
srcs = batch
max_len_srcs = max([len(src) for src in srcs])
srcs = [src + [self.pad_token_id] * (max_len_srcs - len(src)) for src in srcs]
srcs = torch.LongTensor(srcs)
max_len_tgts = max([len(tgt) for tgt in tgts])
tgts = [tgt + [self.pad_token_id] * (max_len_tgts - len(tgt)) for tgt in tgts]
tgts = torch.LongTensor(tgts)
return srcs, tgts
def create_logger(log_dir, exp_name):
logger = getLogger(exp_name)
logger.setLevel(INFO)
handler1 = StreamHandler()
handler1.setFormatter(Formatter("%(message)s"))
handler2 = FileHandler(filename=f"{log_dir}/{exp_name}.log")
handler2.setFormatter(Formatter("%(message)s"))
logger.addHandler(handler1)
logger.addHandler(handler2)
return logger
def seed_everything(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def get_model(args, src_vocab_size, tgt_vocab_size):
if args.model_name == "simple_gru":
encoder = SimpleGRUEncoder(src_vocab_size, args.encoder_emb_size,
args.encoder_hid_size, args.encoder_num_layers,
args.encoder_bidirectional, args.dropout)
decoder = SimpleGRUDecoder(tgt_vocab_size, args.decoder_emb_size,
args.decoder_hid_size, args.decoder_num_layers,
args.dropout)
elif args.model_name == "simple_lstm":
encoder = SimpleLSTMEncoder(src_vocab_size, args.encoder_emb_size,
args.encoder_hid_size, args.encoder_num_layers,
args.encoder_bidirectional, args.dropout)
decoder = SimpleLSTMDecoder(tgt_vocab_size, args.decoder_emb_size,
args.decoder_hid_size, args.decoder_num_layers,
args.dropout)
elif args.model_name == "attn_rnn":
encoder = SimpleGRUEncoder(src_vocab_size, args.encoder_emb_size,
args.encoder_hid_size, args.encoder_num_layers,
args.encoder_bidirectional, args.dropout)
decoder = AttnGRUDecoder(tgt_vocab_size, args.decoder_emb_size,
args.decoder_hid_size,
args.encoder_hid_size * (1 + args.encoder_bidirectional) * \
args.encoder_num_layers,
args.decoder_num_layers, args.dropout)
else:
raise ValueError
model = Seq2SeqModel(encoder, decoder, args.decoding_style)
return model
def get_optimizer(args, model):
if args.optimizer == "adam":
return optim.Adam(model.parameters(), lr=args.lr)
elif args.optimizer == "sgd":
return optim.SGD(model.parameters(), lr=args.lr)
elif args.optimizer == "adadelta":
return optim.Adadelta(model.parameters(), lr=args.lr)
else:
raise ValueError
def get_scheduler(args, optimizer, milestones=None):
if args.scheduler == "exp":
return optim.lr_scheduler.ExponentialLR(optimizer, args.gamma)
elif args.scheduler == "multi_step":
return optim.lr_scheduler.MultiStepLR(optimizer, milestones, args.gamma)
else:
raise ValueError
def init_uni_weights(model, width):
for name, param in model.named_parameters():
nn.init.uniform_(param.data, -width, width)
def count_parameters(model):
count = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'The model has {count} trainable parameters')
def ids2sentence(ids, id2wd):
"""
ids : tensor
(bs, length)
id2wd : Dict
Return
sentences : List
list of str
"""
tokens = [[id2wd[_id.item()] for _id in _ids] + ["<eos>"] for _ids in ids]
tokens = [_tokens[:_tokens.index("<eos>")] for _tokens in tokens]
sentences = [" ".join(_tokens).replace("@@ ", "") for _tokens in tokens]
return sentences
def calc_bleu(sys, refs):
bleu = sacrebleu.corpus_bleu(sys, refs)
return bleu.score