-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
37 lines (29 loc) · 962 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from multiprocessing import Pool
from DataProcessing import DataCleaner
from Fitter import Fitter
from Simulation import Simulation
from PerformanceMetrics import DescriptiveStatistics
vector = [15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]
# Import training data instance
dataTrain = DataCleaner('TRAIN', merge_new_data=True)
fit = Fitter(dataTrain)
fit.fit_theo_CorrBBO()
fit.fit_theo_HL()
# fit = Fitter(dataTrain)
# # Find model parameters
# if __name__ == '__main__':
# with Pool(processes=6) as p:
# p.map(fit.fit_theo_eOmniPresent, vector)
# Import test data instance
dataTest = DataCleaner('TEST')
# Simulate using test data
sim = Simulation(dataTest)
sim.pred_theo_midprice()
sim.pred_theo_smartp()
sim.pred_theo_weigted_mid()
sim.pred_theo_smart_mid()
sim.pred_theo_HL()
sim.pred_theo_CorrBBO()
sim.pred_theo_LT()
# for i in vector:
# sim.pred_theo_eOmniPresent(fCol=i)