-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpypsa-to-iamc.py
807 lines (653 loc) · 68.8 KB
/
pypsa-to-iamc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
"""
Script to convert networks from PyPSA-Eur-Sec v0.5.0 to data format used in the
IAMC database
"""
import pypsa
import openpyxl
import pandas as pd
import numpy as np
import math
import collections
def select_time_period(series) :
"""
returns the series sliced in a specified time period (summer, winter,or just all year)
"""
if 'Winter'in sheet :
a=pd.Series(series[winter_i:winter_e])
b=pd.Series(series[winter_ii:winter_ee])
return pd.concat([a,b])
if 'summer' in sheet or 'Summer' in sheet :
return pd.Series(series[summer_i:summer_e])
else :
return series
def select_metric(series) :
"""
returns the peak (max), percentile 25, percentile 50, or total sum of a series
"""
if 'peak' in sheet :
return series.max()
if 'Percentile' in sheet and '50' in sheet:
return series.quantile(0.5)
if 'Percentile' in sheet and '25' in sheet :
return series.quantile(0.25)
else :
return series.sum()
def safe_div(n, d):
"""
Only divides if the divisor is not zero, otherwise returns zero.
"""
return n / d if d else 0
#Defining constants (values in pypsa are mainly described in MW)
summer_i='2013-06-01 00:00:00'
summer_e='2013-09-30 23:00:00'
winter_i='2013-11-01 00:00:00'
winter_e='2013-12-31 23:00:00'
winter_ii='2013-01-01 00:00:00'
winter_ee='2013-02-28 23:00:00'
h=3 #hourly resolution
MWh2TJ=3.6e-3 #convert MWh to TJ
TWh2TJ=3.6e+3 #convert TWh to TJ
MW2GW=0.001
#original IAMC file, official template
path = "format/IAMC_format.xlsx"
model = "PyPSA-Eur-Sec 0.6.0"
scenarios ={'test scenario':'-cb25.7ex0',
#'Climate neutrality scenario':'-cb45.0ex0',
#'Current trends':''
} #defines carbon budget for each scenario
years = [2020]
sheets={"data_installed_capacity":0,
"data_fuel_consumption_supply":1,
"data_Emissions_supply":2,
"data_Yearly_generation_supply":3,
"data_Winter_peak_generation":4,
"data_summer_peak_generation":5,
"data_Percentile50_generation":6,
"data_Percentile25_generation":7,
"data_Investments":8,
"data_Demand_final_energy":9,
"data_Demand_emissions":10,
"data_Percentile_25_consumpt":11,
"data_Percentile_50_consumpt":12,
"data_Summer_peak_consumpt":13,
"data_Winter_peak_consumpt":14,
"data_Efficiency_demand":15,
"data_Efficiency_supply":16,
"data_Other_variables":17}
sheet_var={"installed_capacity":'Installed capacity',
"fuel_consumption_supply":"Fuel consumption",
"Emissions_supply":"Emissions|Kyoto gases|Fossil|CO2",
"Yearly_generation_supply":'Generation|Yearly',
"Winter_peak_generation":'Generation|Winter peak',
"summer_peak_generation":'Generation|Summer peak',
"Percentile50_generation":'Generation|Percentile 50',
"Percentile25_generation":'Generation|Percentile 25',
'Percentile_25_consumpt':'Hourly power consumption|Percentile 25',
'Percentile_50_consumpt':'Hourly power consumption|Percentile 50',
'Summer_peak_consumpt' :'Hourly power consumption|Summer peak',
'Winter_peak_consumpt':'Hourly power consumption|Winter peak',
'Investments':'Investments',
'Demand_final_energy':'Demand_final_energy',
'Demand_emissions':'Emissions|Kyoto gases|Fossil|CO2',
'Efficiency_demand':'Efficiency',
'Efficiency_supply':'Efficiency',
'Other_variables':'',
'ENBIOS':''}
for scenario in scenarios:
#one excel file per scenario
file = openpyxl.load_workbook(path)
ds_eu, ds_eu_uk, ds_all=([] for i in range(3)) #separate sheets for regions
for year in years:
n=pypsa.Network('postnetworks/elec_s370_37m_lv1.0__3H-T-H-B-I-solar+p3-dist1{}_{}.nc'.format(scenarios[scenario],year))
industry_demand=pd.read_table('resources/industrial_energy_demand_elec_s370_37m_{}.csv'.format(year),delimiter=',',index_col=0)
costs = pd.read_csv("costs/costs_{}.csv".format(year), index_col=[0,1])
year_sub=2015 if year==years[0] else year # For the 2015 column of the table, information of 2020 is used.
countries=list(set(n.buses['country']))
countries.remove('')
countries.insert(0,'EU_UK')
countries.insert(0,'EU')
EU_UK = [country for country in countries if country not in ('NO','BA','ME','MK','RS','AL','CH','EU')] #EU25+UK (EU25=EU27-Malta and Cyprus not in model)
EU = [country for country in countries if country not in ('NO','BA','ME','MK','RS','AL','CH','GB','EU_UK')] #EU25 (EU27-Malta and Cyprus not in model)
countries.insert(0,'All') #All countries being modeled
All= [country for country in countries if country not in ('EU','EU_UK')]
n_eff_eu,n_eff_eu_uk,n_eff_all =(collections.defaultdict(lambda: 0, {}) for i in range(3)) #to keep track of efficiencies for regions
regions={ 'EU':[EU,ds_eu,n_eff_eu], 'EU_UK':[EU_UK,ds_eu_uk,n_eff_eu_uk], 'All': [All,ds_all,n_eff_all]}
for country in countries:
# Prepare ds and var for the specific country
ds=[]
var=[]
for sheet in sheets.keys() :
if year==years[0]:
#one datasheet per country including information from different years
target = file.copy_worksheet(file[sheet])
target.title =sheet +' '+str(country)
if country is 'EU' : #Separate worksheet for EU so other values could be added as the program runs
ds_eu.append(file[sheet +' '+str(country)])
if country is 'EU_UK' : #Separate worksheet for EU+UK
ds_eu_uk.append(file[sheet +' '+str(country)])
if country is 'All' : #Separate worksheet for All counties being modeled
ds_all.append(file[sheet +' '+str(country)])
ds.append(file[sheet +' '+str(country)]) #set of worksheets for each country that is replaced each loop
var.append({})
#############################################
###### Fill installed capacities sheet #####
#############################################
###Electric capcaties (MW -> GW)
sh=sheets['installed_capacity'] #first sheet
#Capacity : Solar PV (rooftop, ground)
var[sh]['Installed capacity|Electricity|Solar|Rooftop PV'] = MW2GW*n.generators.p_nom_opt.filter(like ='solar rooftop').filter(like =country).sum()
var[sh]['Installed capacity|Heat|Solar'] = MW2GW*n.generators.p_nom_opt.filter(like ='solar thermal').filter(like =country).sum()
var[sh]['Installed capacity|Electricity|Solar|Open field'] = (MW2GW*n.generators.p_nom_opt.filter(like ='solar').filter(like =country).sum()
-var[sh]['Installed capacity|Heat|Solar']-var[sh]['Installed capacity|Electricity|Solar|Rooftop PV'])
var[sh]['Installed capacity|Electricity|Solar'] =var[sh]['Installed capacity|Electricity|Solar|Open field']+var[sh]['Installed capacity|Electricity|Solar|Rooftop PV']
#Capacity : onshore and offshore wind
var[sh]['Installed capacity|Electricity|Wind|Onshore']=MW2GW*n.generators.p_nom_opt.filter(like ='onwind').filter(like =country).sum()
var[sh]['Installed capacity|Electricity|Wind|Offshore']=MW2GW*n.generators.p_nom_opt.filter(like ='offwind').filter(like =country).sum()
var[sh]['Installed capacity|Electricity|Wind']=var[sh]['Installed capacity|Electricity|Wind|Onshore']+var[sh]['Installed capacity|Electricity|Wind|Offshore']
#Capacity : Nuclear
var[sh]['Installed capacity|Electricity|Nuclear'] =MW2GW*((n.links.efficiency.filter(like ='nuclear').filter(like =country)
*n.links.p_nom_opt.filter(like ='nuclear').filter(like =country)).sum())
#Capacity : Coal (Lignite)
var[sh]['Installed capacity|Electricity|Coal|Brown Coal|Lignite'] = MW2GW*((n.links.efficiency.filter(like ='lignite').filter(like =country)
*n.links.p_nom_opt.filter(like ='lignite').filter(like =country)).sum())
var[sh]['Installed capacity|Electricity|Coal|Brown Coal'] =var[sh]['Installed capacity|Electricity|Coal|Brown Coal|Lignite']
var[sh]['Installed capacity|Electricity|Coal'] = MW2GW*((n.links.efficiency.filter(like ='coal').filter(like =country)
*n.links.p_nom_opt.filter(like ='coal').filter(like =country)).sum())+ var[sh]['Installed capacity|Electricity|Coal|Brown Coal']
#Capacity : Natural gas(OCGT, CCGT, CHP, CHP CC)
var[sh]['Installed capacity|Electricity|Gases|Fossil|Natural gas'] = MW2GW*((n.links.efficiency.filter(like ='gas CHP').filter(like =country)
*n.links.p_nom_opt.filter(like ='gas CHP').filter(like =country)).sum())
var[sh]['Installed capacity|Electricity|Gases|Fossil|Natural gas'] += MW2GW*((n.links.efficiency.filter(like ='OCGT').filter(like =country)
*n.links.p_nom_opt.filter(like ='OCGT').filter(like =country)).sum())
var[sh]['Installed capacity|Electricity|Gases|Fossil|Natural gas'] += MW2GW*((n.links.efficiency.filter(like ='CCGT').filter(like =country)
*n.links.p_nom_opt.filter(like ='CCGT').filter(like =country)).sum())
var[sh]['Installed capacity|Electricity|Gases|Fossil|Natural gas|CCS'] = MW2GW*((n.links.efficiency.filter(like ='gas CHP CC').filter(like =country)
*n.links.p_nom_opt.filter(like ='gas CHP CC').filter(like =country)).sum())
#Capacity :Biomass (CCS)
var[sh]['Installed capacity|Electricity|Solid bio and waste|Primary solid biomass'] = MW2GW*((n.links.efficiency.filter(like ='solid biomass CHP').filter(like =country)
*n.links.p_nom_opt.filter(like ='solid biomass CHP').filter(like =country)).sum())
var[sh]['Installed capacity|Electricity|Solid bio and waste'] = var[sh]['Installed capacity|Electricity|Solid bio and waste|Primary solid biomass']
var[sh]['Installed capacity|Electricty|Biomass'] = var[sh]['Installed capacity|Electricity|Solid bio and waste']
var[sh]['Installed capacity|Electricity|Solid bio and waste|Primary solid biomass|CCS'] = MW2GW*((n.links.efficiency.filter(like ='solid biomass CHP CC').filter(like =country)
*n.links.p_nom_opt.filter(like ='solid biomass CHP CC').filter(like =country)).sum())
var[sh]['Installed capacity|Electricity|Solid bio and waste|CCS'] = var[sh]['Installed capacity|Electricity|Solid bio and waste|Primary solid biomass|CCS']
var[sh]['Installed capacity|Electricty|Biomass|CCS'] = var[sh]['Installed capacity|Electricity|Solid bio and waste|CCS']
#Capacity : Hydrogen
var[sh]['Installed capacity|Electricity|Gases|Hydrogen'] = MW2GW*((n.links.efficiency.filter(like ='H2 Fuel Cell').filter(like =country)
*n.links.p_nom_opt.filter(like ='H2 Fuel Cell').filter(like =country)).sum())
#Capacity : Oil
var[sh]['Installed capacity|Electricity|Liquids|Fossil'] = MW2GW*((n.links.efficiency.filter(like ='oil-').filter(like =country)
*n.links.p_nom_opt.filter(like ='oil-').filter(like =country)).sum())
#Capacity : Power to gas
# According to the SENTINEL team, this variable should include:
# "the power capacity used to produce H2, synthetic methane, synthetic oil or the three of them"
var[sh]['Installed capacity|P2G|Electricity'] = MW2GW*((n.links.efficiency.filter(like ='Sabatier').filter(like =country)
*n.links.p_nom_opt.filter(like ='Sabatier').filter(like =country)).sum()+
(n.links.efficiency.filter(like ='helmeth').filter(like =country)*n.links.p_nom_opt.filter(like ='helmeth').filter(like =country)).sum()+
(n.links.efficiency.filter(like ='H2 Electrolysis').filter(like =country)*n.links.p_nom_opt.filter(like ='H2 Electrolysis').filter(like =country)).sum()+
(n.links.efficiency.filter(like ='Fischer-Tropsch').filter(like =country)*n.links.p_nom_opt.filter(like ='Fischer-Tropsch').filter(like =country)).sum())
#Capacity : hydro (reservoir, ror)
var[sh]['Installed capacity|Electricity|Hydro|river'] = MW2GW*n.generators.p_nom_opt.filter(like ='ror').filter(like =country).sum()
var[sh]['Installed capacity|Electricity|Hydro|dam'] = MW2GW*n.storage_units.p_nom_opt.filter(like ='hydro').filter(like =country).sum()
var[sh]['Installed capacity|Electricity|Hydro'] = var[sh]['Installed capacity|Electricity|Hydro|river']+var[sh]['Installed capacity|Electricity|Hydro|dam']
#Capacity : storage (PHS, battery, H2 storage)
var[sh]['Installed capacity|Flexibility|Electricity Storage|Medium duration'] = MW2GW*((n.storage_units.p_nom_opt.filter(like ='PHS').filter(like =country).sum()
+n.stores.e_nom_opt.filter(like ='H2').filter(like =country)).sum()/168) #assume one week charge time for H2 storage
var[sh]['Installed capacity|Flexibility|Electricity Storage|Short duration'] = MW2GW*(n.links.efficiency.filter(like ='battery charger')
*n.links.p_nom_opt.filter(like ='battery charger')).sum()
# Battery includes utility-scale batteries, home batteries and EV batteries.
var[sh]['Installed capacity|Flexibility|Electricity Storage'] = (var[sh]['Installed capacity|Flexibility|Electricity Storage|Medium duration']+
var[sh]['Installed capacity|Flexibility|Electricity Storage|Short duration'])
#Capacity : Interconnect
var[sh]['Installed capacity|Flexibility|Interconnect Importing Capacity'] = MW2GW*((n.lines.s_nom_opt[[i for i in n.lines.index if country in n.lines.bus0[i] or country in n.lines.bus1[i]]]).sum()
+(n.links.p_nom_opt[[i for i in n.links.index if 'DC' in n.links.carrier[i] and ((country in n.links.bus0[i]) is not (country in n.links.bus1[i]))]]).sum())
### Heat capcaties (MW -> GW)
#Capacity :Biomass (CCS)
var[sh]['Installed capacity|Heat|Biomass'] = MW2GW*((n.links.efficiency2.filter(like ='solid biomass CHP').filter(like =country)
*n.links.p_nom_opt.filter(like ='solid biomass CHP').filter(like =country)).sum())
var[sh]['Installed capacity|Heat|Solid bio and waste'] = var[sh]['Installed capacity|Heat|Biomass']
var[sh]['Installed capacity|Heat|Solid bio and waste|Primary solid biomass'] = var[sh]['Installed capacity|Heat|Solid bio and waste']
var[sh]['Installed capacity|Heat|Biomass|CCS'] = MW2GW*((n.links.efficiency2.filter(like ='solid biomass CHP CC').filter(like =country)
*n.links.p_nom_opt.filter(like ='solid biomass CHP CC').filter(like =country)).sum())
var[sh]['Installed capacity|Heat|Solid bio and waste|CCS'] = var[sh]['Installed capacity|Heat|Biomass|CCS']
var[sh]['Installed capacity|Heat|Solid bio and waste|Primary solid biomass|CCS'] = var[sh]['Installed capacity|Heat|Solid bio and waste|CCS']
#Capacity :Electricity (Resistive heater, heat pump)
var[sh]['Installed capacity|Heat|Electricity|Direct'] = MW2GW*((n.links.efficiency.filter(like ='resistive heater').filter(like =country)
*n.links.p_nom_opt.filter(like ='resistive heater').filter(like =country)).sum())
var[sh]['Installed capacity|Heat|Electricity|Heat pump'] = MW2GW*((n.links_t.efficiency.filter(like ='heat pump').filter(like =country).mean()
*n.links.p_nom_opt.filter(like ='heat pump').filter(like =country)).sum())
var[sh]['Installed capacity|Heat|Electricity']=var[sh]['Installed capacity|Heat|Electricity|Direct']+var[sh]['Installed capacity|Heat|Electricity|Heat pump']
#Capacity :Natural gas
var[sh]['Installed capacity|Heat|Gases|Fossil|Natural Gas'] = MW2GW*((n.links.efficiency2.filter(like ='gas CHP').filter(like =country)
*n.links.p_nom_opt.filter(like ='gas CHP').filter(like =country)).sum())
var[sh]['Installed capacity|Heat|Gases|Fossil|Natural Gas'] += MW2GW*((n.links.efficiency.filter(like ='gas boiler').filter(like =country)
*n.links.p_nom_opt.filter(like ='gas boiler').filter(like =country)).sum())
var[sh]['Installed capacity|Heat|Gases|Fossil|Natural Gas|CCS'] = MW2GW*((n.links.efficiency2.filter(like ='gas CHP CC').filter(like =country)
*n.links.p_nom_opt.filter(like ='gas CHP CC').filter(like =country)).sum())
#Capacity : Oil
var[sh]['Installed capacity|Heat|Liquids|Fossil'] = MW2GW*((n.links.efficiency.filter(like ='oil boiler').filter(like =country)
*n.links.p_nom_opt.filter(like ='oil boiler').filter(like =country)).sum())
# Hydrogen capacities
var[sh]['Installed capacity|Hydrogen|Electricity'] = MW2GW*((n.links.efficiency.filter(like ='H2 Electrolysis').filter(like =country)
*n.links.p_nom_opt.filter(like ='H2 Electrolysis').filter(like =country)).sum())
var[sh]['Installed capacity|Hydrogen|Gasses|Fossil|Natural gas|CCS'] = MW2GW*((n.links.efficiency.filter(like ='SMR CC').filter(like =country)
*n.links.p_nom_opt.filter(like ='SMR CC').filter(like =country)).sum())
var[sh]['Installed capacity|Hydrogen|Gasses|Fossil|Natural gas'] = MW2GW*((n.links.efficiency.filter(like ='SMR').filter(like =country)
*n.links.p_nom_opt.filter(like ='SMR').filter(like =country)).sum())
### Fuel consumption (MWh -> TJ)
sh=sheets['fuel_consumption_supply']
## For Electricity
#Fuel : Nuclear
var[sh]['Fuel consumption|Electricity|Nuclear'] =h*MWh2TJ*(n.links_t.p0.filter(like ='nuclear').filter(like =country)).sum().sum()
#Fuel : Coal (Lignite)
var[sh]['Fuel consumption|Electricity|Coal|Brown Coal|Lignite'] = h*MWh2TJ*(n.links_t.p0.filter(like ='lignite').filter(like =country)).sum().sum()
var[sh]['Fuel consumption|Electricity|Coal|Brown Coal'] =var[sh]['Fuel consumption|Electricity|Coal|Brown Coal|Lignite']
var[sh]['Fuel consumption|Electricity|Coal'] = h*MWh2TJ*(n.links_t.p0.filter(like ='coal').filter(like =country)).sum().sum() + var[sh]['Fuel consumption|Electricity|Coal|Brown Coal']
#Fuel : Natural gas(OCGT, CCGT, CHP, CHP CC)
# **CHP fuels calculated bsed on share of electricity and heat, 'safe_div' is used in case thre is division by zero:
var[sh]['Fuel consumption|Electricity|Gases|Fossil|Natural gas'] = (
h*MWh2TJ* (n.links_t.p0.filter(like ='OCGT').filter(like =country)).sum().sum()+
h*MWh2TJ*(n.links_t.p0.filter(like ='CCGT').filter(like =country)).sum().sum()+
h*MWh2TJ*safe_div(n.links_t.p0.filter(like ='gas CHP').filter(like =country).sum().sum()
*n.links_t.p1.filter(like ='gas CHP').filter(like =country).sum().sum()
,n.links_t.p1.filter(like ='gas CHP').filter(like =country).sum().sum()+
n.links_t.p2.filter(like ='gas CHP').filter(like =country).sum().sum()))
var[sh]['Fuel consumption|Electricity|Gases|Fossil|Natural gas|CCS'] = (
h*MWh2TJ*safe_div(n.links_t.p0.filter(like ='gas CHP CC').filter(like =country).sum().sum()
*n.links_t.p1.filter(like ='gas CHP CC').filter(like =country).sum().sum()
,n.links_t.p1.filter(like ='gas CHP CC').filter(like =country).sum().sum()+
n.links_t.p2.filter(like ='gas CHP CC').filter(like =country).sum().sum()))
#Fuel :Biomass (CCS)
var[sh]['Fuel consumption|Electricity|Solid bio and waste|Primary solid biomass'] = (
h*MWh2TJ*safe_div(n.links_t.p0.filter(like ='solid biomass CHP').filter(like =country).sum().sum()
*n.links_t.p1.filter(like ='solid biomass CHP').filter(like =country).sum().sum()
,n.links_t.p1.filter(like ='solid biomass CHP').filter(like =country).sum().sum()+
n.links_t.p2.filter(like ='solid biomass CHP').filter(like =country).sum().sum()))
var[sh]['Fuel consumption|Electricity|Solid bio and waste'] = var[sh]['Fuel consumption|Electricity|Solid bio and waste|Primary solid biomass']
var[sh]['Fuel consumption|Electricty|Biomass'] = var[sh]['Fuel consumption|Electricity|Solid bio and waste']
var[sh]['Fuel consumption|Electricity|Solid bio and waste|Primary solid biomass|CCS'] = (
h*MWh2TJ*safe_div(n.links_t.p0.filter(like ='solid biomass CHP CC').filter(like =country).sum().sum()
*n.links_t.p1.filter(like ='solid biomass CHP CC').filter(like =country).sum().sum()
,n.links_t.p1.filter(like ='solid biomass CHP CC').filter(like =country).sum().sum()+
n.links_t.p2.filter(like ='solid biomass CHP CC').filter(like =country).sum().sum()))
var[sh]['Fuel consumption|Electricity|Solid bio and waste|CCS'] = var[sh]['Fuel consumption|Electricity|Solid bio and waste|Primary solid biomass|CCS']
var[sh]['Fuel consumption|Electricty|Biomass|CCS'] = var[sh]['Fuel consumption|Electricity|Solid bio and waste|CCS']
#Fuel : Hydrogen
var[sh]['Fuel consumption|Electricity|Gases|Hydrogen'] = h*MWh2TJ*(n.links_t.p0.filter(like ='H2 Fuel Cell').filter(like =country)).sum().sum()
#Fuel : Oil
var[sh]['Fuel consumption|Electricity|Liquids|Fossil'] = h*MWh2TJ*(n.links_t.p0.filter(like ='oil-').filter(like =country)).sum().sum()
#Fuel : Hydrogen
var[sh]['Fuel consumption|Hydrogen|Gasses|Fossil|Natural gas'] = h*MWh2TJ*(n.links_t.p0.filter(like ='SMR').filter(like =country)).sum().sum()
var[sh]['Fuel consumption|Hydrogen|Gasses|Fossil|Natural gas|CCS'] = h*MWh2TJ*(n.links_t.p0.filter(like ='SMR CC').filter(like =country)).sum().sum()
var[sh]['Fuel consumption|Hydrogen|Electricity'] = h*MWh2TJ*(n.links_t.p0.filter(like ='H2 Electrolysis').filter(like =country)).sum().sum()
## For Heat
#Fuel :Biomass (CCS)
var[sh]['Fuel consumption|Heat|Biomass'] = (h*MWh2TJ*(n.links_t.p0.filter(like ='solid biomass CHP').filter(like =country)).sum().sum()
-var[sh]['Fuel consumption|Electricty|Biomass'])
var[sh]['Fuel consumption|Heat|Solid bio and waste'] = var[sh]['Fuel consumption|Heat|Biomass']
var[sh]['Fuel consumption|Heat|Solid bio and waste|Primary solid biomass'] = var[sh]['Fuel consumption|Heat|Solid bio and waste']
var[sh]['Fuel consumption|Heat|Biomass|CCS'] = (h*MWh2TJ*(n.links_t.p0.filter(like ='solid biomass CHP CC').filter(like =country)).sum().sum()
-var[sh]['Fuel consumption|Electricty|Biomass|CCS'])
var[sh]['Fuel consumption|Heat|Solid bio and waste|CCS'] = var[sh]['Fuel consumption|Heat|Biomass|CCS']
var[sh]['Fuel consumption|Heat|Solid bio and waste|Primary solid biomass|CCS'] = var[sh]['Fuel consumption|Heat|Solid bio and waste|CCS']
#Fuel :Natural gas
var[sh]['Fuel consumption|Heat|Gases|Fossil|Natural Gas'] = h*MWh2TJ* (n.links_t.p0.filter(like ='gas boiler').filter(like =country)).sum().sum()
var[sh]['Fuel consumption|Heat|Gases|Fossil|Natural Gas'] += (
h*MWh2TJ*safe_div(n.links_t.p0.filter(like ='gas CHP').filter(like =country).sum().sum()
*n.links_t.p2.filter(like ='gas CHP').filter(like =country).sum().sum()
,n.links_t.p1.filter(like ='gas CHP').filter(like =country).sum().sum()+
n.links_t.p2.filter(like ='gas CHP').filter(like =country).sum().sum()))
var[sh]['Fuel consumption|Heat|Gases|Fossil|Natural Gas|CCS'] = (h*MWh2TJ*(n.links_t.p0.filter(like ='gas CHP CC').filter(like =country)).sum().sum()
-var[sh]['Fuel consumption|Electricity|Gases|Fossil|Natural gas|CCS'])
#Fuel : Oil
var[sh]['Fuel consumption|Heat|Liquids|Fossil'] = h*MWh2TJ*(n.links_t.p0.filter(like ='oil boiler').filter(like =country)).sum().sum()
#############################################
###### Fill Emissions sheet #####
#############################################
### Emissions (tCO2 -> MtCO2)
sh=sheets['Emissions_supply']
#Emissions : Coal (Lignite)
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Coal|Brown Coal|Lignite'] = (1e-6)*(-1)*h*(n.links_t.p2.filter(like ='lignite').filter(like =country)).sum().sum()
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Coal|Brown Coal'] =var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Coal|Brown Coal|Lignite']
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Coal'] = (1e-6)*(-1)*h*(n.links_t.p2.filter(like ='coal').filter(like =country)).sum().sum() + var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Coal|Brown Coal']
#Emissions : Natural gas(OCGT, CCGT, CHP, CHP CC, SMR, SMR CC)
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Gases|Fossil|Natural gas'] = (
(1e-6)*(-1)*h*safe_div(n.links_t.p3.filter(like ='gas CHP').filter(like =country).sum().sum()
*n.links_t.p1.filter(like ='gas CHP').filter(like =country).sum().sum()
,n.links_t.p1.filter(like ='gas CHP').filter(like =country).sum().sum()+
n.links_t.p2.filter(like ='gas CHP').filter(like =country).sum().sum()))
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Gases|Fossil|Natural gas|CCS'] = (
(1e-6)*(-1)*h*safe_div(n.links_t.p3.filter(like ='gas CHP CC').filter(like =country).sum().sum()
*n.links_t.p1.filter(like ='gas CHP CC').filter(like =country).sum().sum()
,n.links_t.p1.filter(like ='gas CHP CC').filter(like =country).sum().sum()+
n.links_t.p2.filter(like ='gas CHP CC').filter(like =country).sum().sum()))
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Gases|Fossil|Natural gas'] += (1e-6)*(-1)*h* (n.links_t.p2.filter(like ='OCGT').filter(like =country)).sum().sum()
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Gases|Fossil|Natural gas'] += (1e-6)*(-1)*h*(n.links_t.p2.filter(like ='CCGT').filter(like =country)).sum().sum()
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Hydrogen|Gasses|Fossil|Natural gas'] = (1e-6)*(-1)*h*(n.links_t.p2.filter(like ='SMR').filter(like =country)).sum().sum()
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Hydrogen|Gasses|Fossil|Natural gas|CCS'] = (1e-6)*h*(n.links_t.p2.filter(like ='SMR CC').filter(like =country)).sum().sum()
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Gases|Fossil|Natural Gas'] = (
(1e-6)*(-1)*h*safe_div(n.links_t.p3.filter(like ='gas CHP').filter(like =country).sum().sum()
*n.links_t.p2.filter(like ='gas CHP').filter(like =country).sum().sum()
,n.links_t.p1.filter(like ='gas CHP').filter(like =country).sum().sum()+
n.links_t.p2.filter(like ='gas CHP').filter(like =country).sum().sum()))
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Gases|Fossil|Natural Gas|CCS'] = ((1e-6)*(-1)*h*(n.links_t.p3.filter(like ='gas CHP CC').filter(like =country)).sum().sum()
-var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Gases|Fossil|Natural gas|CCS'])
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Gases|Fossil|Natural Gas'] += (1e-6)*(-1)*h* (n.links_t.p2.filter(like ='gas boiler').filter(like =country)).sum().sum()
#Emissions :Biomass
#CHP emissions are calculated based on share of electricity and heat:
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Solid bio and waste|Primary solid biomass'] = (
(1e-6)*(-1)*h*safe_div(n.links_t.p3.filter(like ='solid biomass CHP').filter(like =country).sum().sum()
*n.links_t.p1.filter(like ='solid biomass CHP').filter(like =country).sum().sum()
,n.links_t.p1.filter(like ='solid biomass CHP').filter(like =country).sum().sum()+
n.links_t.p2.filter(like ='solid biomass CHP').filter(like =country).sum().sum()))
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Solid bio and waste'] = var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Solid bio and waste|Primary solid biomass']
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricty|Biomass'] = var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Solid bio and waste']
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Biomass'] = ((1e-6)*(-1)*h*(n.links_t.p3.filter(like ='solid biomass CHP').filter(like =country)).sum().sum()
-var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Solid bio and waste|Primary solid biomass'])
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Solid bio and waste'] = var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Biomass']
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Solid bio and waste|Primary solid biomass'] = var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Solid bio and waste']
#Emissions :Biomass (CCS)
#CHP emissions are calculated based on share of electricity and heat:
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Solid bio and waste|Primary solid biomass|CCS'] = (
(1e-6)*(-1)*h*safe_div(n.links_t.p3.filter(like ='solid biomass CHP CC').filter(like =country).sum().sum()
*n.links_t.p1.filter(like ='solid biomass CHP CC').filter(like =country).sum().sum()
,n.links_t.p1.filter(like ='solid biomass CHP CC').filter(like =country).sum().sum()+
n.links_t.p2.filter(like ='solid biomass CHP CC').filter(like =country).sum().sum()))
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Solid bio and waste|CCS'] = var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Solid bio and waste|Primary solid biomass|CCS']
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricty|Biomass|CCS'] = var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Solid bio and waste|CCS']
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Biomass|CCS'] = ((1e-6)*(-1)*h*(n.links_t.p3.filter(like ='solid biomass CHP CC').filter(like =country)).sum().sum()
-var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Solid bio and waste|Primary solid biomass|CCS'])
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Solid bio and waste|CCS'] = var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Biomass|CCS']
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Solid bio and waste|Primary solid biomass|CCS'] = var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Solid bio and waste|CCS']
#Emissions : Oil
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Electricity|Liquids|Fossil'] = (1e-6)*(-1)*h*(n.links_t.p2.filter(like ='oil-').filter(like =country)).sum().sum()
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Heat|Liquids|Fossil'] = (1e-6)*(-1)*h*(n.links_t.p2.filter(like ='oil boiler').filter(like =country)).sum().sum()
#############################################
###### Fill energy generation sheets #####
#############################################
###Energy generation: total,peaks,and percentiles (MWh -> GWh)
for sheet in sheets.keys():
if sheet in ("Yearly_generation_supply","Winter_peak_generation","summer_peak_generation","Percentile50_generation","Percentile25_generation"):
sh=sheets[sheet]
#Energy generation : Solar PV (rooftop, ground)
var[sh][sheet_var[sheet]+'|Electricity|Solar|Rooftop PV'] = MW2GW*h*select_metric(select_time_period(n.generators_t.p.filter(like ='solar rooftop').filter(like =country).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Heat|Solar'] = MW2GW*h*select_metric(select_time_period(n.generators_t.p.filter(like ='solar thermal').filter(like =country).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Electricity|Solar|Open field'] = (MW2GW*h*select_metric(select_time_period(n.generators_t.p.filter(like ='solar').filter(like =country).sum(axis=1)))
-var[sh][sheet_var[sheet]+'|Heat|Solar']-var[sh][sheet_var[sheet]+'|Electricity|Solar|Rooftop PV'])
var[sh][sheet_var[sheet]+'|Electricity|Solar'] =var[sh][sheet_var[sheet]+'|Electricity|Solar|Open field']+var[sh][sheet_var[sheet]+'|Electricity|Solar|Rooftop PV']
#Energy generation : onshore and offshore wind
var[sh][sheet_var[sheet]+'|Electricity|Wind|Onshore']=MW2GW*h*select_metric(select_time_period(n.generators_t.p.filter(like ='onwind').filter(like =country).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Electricity|Wind|Offshore']=MW2GW*h*select_metric(select_time_period(n.generators_t.p.filter(like ='offwind').filter(like =country).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Electricity|Wind']=var[sh][sheet_var[sheet]+'|Electricity|Wind|Onshore']+var[sh][sheet_var[sheet]+'|Electricity|Wind|Offshore']
#Energy generation : Nuclear (values multiplied by (-1) since pypsa shows generation in links as negative values)
var[sh][sheet_var[sheet]+'|Electricity|Nuclear'] =MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='nuclear').filter(like =country)).sum(axis=1)))
#Energy generation : Coal (Lignite)
var[sh][sheet_var[sheet]+'|Electricity|Coal|Brown Coal|Lignite'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='lignite').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Electricity|Coal|Brown Coal'] =var[sh][sheet_var[sheet]+'|Electricity|Coal|Brown Coal|Lignite']
var[sh][sheet_var[sheet]+'|Electricity|Coal'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='coal').filter(like =country)).sum(axis=1))) + var[sh][sheet_var[sheet]+'|Electricity|Coal|Brown Coal']
#Energy generation : Natural gas(OCGT, CCGT, CHP, CHP CC)
var[sh][sheet_var[sheet]+'|Electricity|Gases|Fossil|Natural gas'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='gas CHP').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Electricity|Gases|Fossil|Natural gas'] += MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='OCGT').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Electricity|Gases|Fossil|Natural gas'] += MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='CCGT').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Electricity|Gases|Fossil|Natural gas|CCS'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='gas CHP CC').filter(like =country)).sum(axis=1)))
#Energy generation :Biomass (CCS)
var[sh][sheet_var[sheet]+'|Electricity|Solid bio and waste|Primary solid biomass'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='solid biomass CHP').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Electricity|Solid bio and waste'] = var[sh][sheet_var[sheet]+'|Electricity|Solid bio and waste|Primary solid biomass']
var[sh][sheet_var[sheet]+'|Electricty|Biomass'] = var[sh][sheet_var[sheet]+'|Electricity|Solid bio and waste']
var[sh][sheet_var[sheet]+'|Electricity|Solid bio and waste|Primary solid biomass|CCS'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='solid biomass CHP CC').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Electricity|Solid bio and waste|CCS'] = var[sh][sheet_var[sheet]+'|Electricity|Solid bio and waste|Primary solid biomass|CCS']
var[sh][sheet_var[sheet]+'|Electricty|Biomass|CCS'] = var[sh][sheet_var[sheet]+'|Electricity|Solid bio and waste|CCS']
#Energy generation : Hydrogen
var[sh][sheet_var[sheet]+'|Electricity|Gases|Hydrogen'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='H2 Fuel Cell').filter(like =country)).sum(axis=1)))
#Energy generation : Oil
var[sh][sheet_var[sheet]+'|Electricity|Liquids|Fossil'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='oil-').filter(like =country)).sum(axis=1)))
#Energy generation : Power to gas
# According to the SENTINEL team, this variable should include:
# "the power capacity used to produce H2, synthetic methane, synthetic oil or the three of them"
var[sh][sheet_var[sheet]+'|P2G|Electricity'] = MW2GW*(-1)*h*select_metric(select_time_period(n.links_t.p1.filter(like ='Sabatier').filter(like =country).sum(axis=1)))
var[sh][sheet_var[sheet]+'|P2G|Electricity']+= MW2GW*(-1)*h*select_metric(select_time_period(n.links_t.p1.filter(like ='helmeth').filter(like =country).sum(axis=1)))
var[sh][sheet_var[sheet]+'|P2G|Electricity']+= MW2GW*(-1)*h*select_metric(select_time_period(n.links_t.p1.filter(like ='H2 Electrolysis').filter(like =country).sum(axis=1)))
var[sh][sheet_var[sheet]+'|P2G|Electricity']+= MW2GW*(-1)*h*select_metric(select_time_period(n.links_t.p1.filter(like ='Fischer-Tropsch').filter(like =country).sum(axis=1)))
#Energy generation : hydro (reservoir, ror)
var[sh][sheet_var[sheet]+'|Electricity|Hydro|river'] = MW2GW*h*select_metric(select_time_period(n.generators_t.p.filter(like ='ror').filter(like =country).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Electricity|Hydro|dam'] = MW2GW*h*select_metric(select_time_period(n.storage_units_t.p.filter(like ='hydro').filter(like =country).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Electricity|Hydro'] = var[sh][sheet_var[sheet]+'|Electricity|Hydro|river']+var[sh][sheet_var[sheet]+'|Electricity|Hydro|dam']
#Energy generation : storage (PHS, battery, H2 storage) (summing positive values for stores and storage units)
var[sh][sheet_var[sheet]+'|Flexibility|Electricity Storage|Medium duration'] = MW2GW*h*(select_metric(select_time_period(
n.storage_units_t.p.filter(like ='PHS').filter(like =country)[n.storage_units_t.p.filter(like ='PHS').filter(like =country)>0].sum(axis=1)))
+select_metric(select_time_period(n.stores_t.p.filter(like ='H2').filter(like =country)[n.stores_t.p.filter(like ='H2').filter(like =country)>0].sum(axis=1))))
var[sh][sheet_var[sheet]+'|Flexibility|Electricity Storage|Short duration'] = MW2GW*h*(select_metric(select_time_period(
n.stores_t.p.filter(like ='battery').filter(like =country)[n.stores_t.p.filter(like ='battery').filter(like =country)>0].sum(axis=1))))
var[sh][sheet_var[sheet]+'|Flexibility|Electricity Storage'] = (var[sh][sheet_var[sheet]+'|Flexibility|Electricity Storage|Medium duration']
+var[sh][sheet_var[sheet]+'|Flexibility|Electricity Storage|Short duration'])
#Energy generation : Interconnect (summing positive values for lines and negative ones for links)
var[sh][sheet_var[sheet]+'|Flexibility|Interconnect Importing Capacity'] = MW2GW*h*(select_metric(select_time_period(
((-1)*n.lines_t.p1[[i for i in n.lines.index if country in n.lines.bus0[i] or country in n.lines.bus1[i]]])
[n.lines_t.p1[[i for i in n.lines.index if country in n.lines.bus0[i] or country in n.lines.bus1[i]]]<0].sum(axis=1)))
+select_metric(select_time_period(((
(-1)*n.links_t.p1[[i for i in n.links.index if 'DC' in n.links.carrier[i] and
((country in n.links.bus0[i]) is not (country in n.links.bus1[i]))]])
[n.links_t.p1[[i for i in n.links.index if 'DC' in n.links.carrier[i] and
((country in n.links.bus0[i]) is not (country in n.links.bus1[i]))]]<0]).sum(axis=1))))
### Heat (MWh -> GWh)
#Energy generation :Biomass (CCS)
var[sh][sheet_var[sheet]+'|Heat|Biomass'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p2.filter(like ='solid biomass CHP').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Heat|Solid bio and waste'] = var[sh][sheet_var[sheet]+'|Heat|Biomass']
var[sh][sheet_var[sheet]+'|Heat|Solid bio and waste|Primary solid biomass'] = var[sh][sheet_var[sheet]+'|Heat|Solid bio and waste']
var[sh][sheet_var[sheet]+'|Heat|Biomass|CCS'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p2.filter(like ='solid biomass CHP CC').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Heat|Solid bio and waste|CCS'] = var[sh][sheet_var[sheet]+'|Heat|Biomass|CCS']
var[sh][sheet_var[sheet]+'|Heat|Solid bio and waste|Primary solid biomass|CCS'] = var[sh][sheet_var[sheet]+'|Heat|Solid bio and waste|CCS']
#Energy generation :Electricity (Resistive heater, heat pump)
var[sh][sheet_var[sheet]+'|Heat|Electricity|Direct'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='resistive heater').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Heat|Electricity|Heat pump'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='heat pump').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Heat|Electricity']=(var[sh][sheet_var[sheet]+'|Heat|Electricity|Direct']
+var[sh][sheet_var[sheet]+'|Heat|Electricity|Heat pump'])
#Energy generation :Natural gas
var[sh][sheet_var[sheet]+'|Heat|Gases|Fossil|Natural Gas'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p2.filter(like ='gas CHP').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Heat|Gases|Fossil|Natural Gas'] += MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='gas boiler').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Heat|Gases|Fossil|Natural Gas|CCS'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p2.filter(like ='gas CHP CC').filter(like =country)).sum(axis=1)))
#Energy generation : Oil
var[sh][sheet_var[sheet]+'|Heat|Liquids|Fossil'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='oil boiler').filter(like =country)).sum(axis=1)))
# Hydrogen Energy generation (MWh -> GWh)
var[sh][sheet_var[sheet]+'|Hydrogen|Electricity'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='H2 Electrolysis').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Hydrogen|Gasses|Fossil|Natural gas'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='SMR').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Hydrogen|Gasses|Fossil|Natural gas|CCS'] = MW2GW*(-1)*h*select_metric(select_time_period((n.links_t.p1.filter(like ='SMR CC').filter(like =country)).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Hydrogen'] = (var[sh][sheet_var[sheet]+'|Hydrogen|Electricity']+
var[sh][sheet_var[sheet]+'|Hydrogen|Gasses|Fossil|Natural gas']+
var[sh][sheet_var[sheet]+'|Hydrogen|Gasses|Fossil|Natural gas|CCS'])
if sheet in ("Percentile_25_consumpt","Percentile_50_consumpt","Summer_peak_consumpt",
"Winter_peak_consumpt") :
sh=sheets[sheet]
#Hourly power consumption : Buildings, Industry, Transportation (MWh -> GWh)
var[sh][sheet_var[sheet]+'|Electricity'] = MW2GW*h*select_metric(select_time_period((n.loads_t.p[[i for i in n.loads.index if i==country+'0 0']]).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Buildings|Heating'] = MW2GW*h*select_metric(select_time_period(n.loads_t.p.filter(like ='heat').filter(like=country).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Buildings|Residential|Heating'] = MW2GW*h*select_metric(select_time_period(n.loads_t.p.filter(like ='heat').filter(like='residential').filter(like=country).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Buildings|Services|Heating'] = MW2GW*h*select_metric(select_time_period(n.loads_t.p.filter(like='heat').filter(like ='services').filter(like=country).sum(axis=1)))
var[sh][sheet_var[sheet]+'|Industries|Electricity'] = MW2GW*h*select_metric(select_time_period(n.loads_t.p.filter(like ='industry electricity').filter(like =country).sum(axis=1).squeeze()))
var[sh][sheet_var[sheet]+'|Transportation'] = (MW2GW*h*(select_metric(select_time_period(n.loads_t.p.filter(like ='transport').filter(like =country).sum(axis=1)))
+select_metric(select_time_period(n.loads_t.p.filter(like ='shipping').filter(like =country).sum(axis=1)))))
if sheet in ("installed_capacity", "fuel_consumption_supply","Emissions_supply",
"Yearly_generation_supply","Winter_peak_generation","summer_peak_generation",
"Percentile50_generation","Percentile25_generation" ) :
sh=sheets[sheet]
var[sh][sheet_var[sheet]+'|Heat']=var[sh][sheet_var[sheet]+'|Electricity']=var[sh][sheet_var[sheet]+'|Hydrogen']=0
for v in var[sh].keys() : #Summing the variables for the total variable, only needed for some of the sheets
if 'Heat|' in v :
masters= [i for i in var[sh].keys() if (i is not v) and (i in v) and ('Heat|' in i) ] #only master variables are included (e.g: wind|onshore and wind|offshore are already summed in wind)
if not masters and 'Biomass' not in v: #'Biomass' is the same as "solid bio and waste"
var[sh][sheet_var[sheet]+'|Heat']+= var[sh][v]
elif 'Electricity|' in v or 'Electricty|' in v : #spelling error in table for 'electricity'
masters= [i for i in var[sh].keys() if i is not v and i in v and ('Electricity|' in i or 'Electricty|' in i) ]
if not masters and 'Biomass' not in v:
var[sh][sheet_var[sheet]+'|Electricity']+= var[sh][v]
elif 'Hydrogen|' in v :
masters= [i for i in var[sh].keys() if (i is not v) and (i in v) and ('Hydrogen|' in i) ]
if not masters and 'Biomass' not in v:
var[sh][sheet_var[sheet]+'|Hydrogen']+= var[sh][v]
#############################################
######### Fill Efficiencies sheet #########
#############################################
### Efficiency
sh=sheets["Efficiency_supply"]
#Efficiency : Solar PV (rooftop, ground), wind
var[sh]['Efficiency|Electricity|Solar|Rooftop PV'] = n.generators.efficiency.filter(like ='solar rooftop').filter(like =country).mean()
var[sh]['Efficiency|Heat|Solar'] = n.generators.efficiency.filter(like ='solar thermal').filter(like =country).mean()
var[sh]['Efficiency|Electricity|Solar|Open field'] = n.generators.efficiency.filter(like ='solar').filter(like =country).mean()
var[sh]['Efficiency|Electricity|Solar'] =var[sh]['Efficiency|Electricity|Solar|Open field']
var[sh]['Efficiency|Electricity|Wind|Onshore']=n.generators.efficiency.filter(like ='onwind').filter(like =country).mean()
var[sh]['Efficiency|Electricity|Wind|Offshore']=n.generators.efficiency.filter(like ='offwind').filter(like =country).mean()
var[sh]['Efficiency|Electricity|Wind']=(var[sh]['Efficiency|Electricity|Wind|Onshore']+
var[sh]['Efficiency|Electricity|Wind|Offshore'])/2
#Efficiency : Nuclear, Coal (lignite)
var[sh]['Efficiency|Electricity|Nuclear'] =n.links.efficiency.filter(like ='nuclear').mean()
var[sh]['Efficiency|Electricity|Coal|Brown Coal|Lignite'] = n.links.efficiency.filter(like ='lignite').filter(like =country).mean()
var[sh]['Efficiency|Electricity|Coal|Brown Coal'] =var[sh]['Efficiency|Electricity|Coal|Brown Coal|Lignite']
var[sh]['Efficiency|Electricity|Coal'] = n.links.efficiency.filter(like ='coal').filter(like =country).mean()
#Efficiency : hydro (reservoir, ror)
var[sh]['Efficiency|Electricity|Hydro|river'] = n.generators.efficiency.filter(like ='ror').filter(like =country).mean()
var[sh]['Efficiency|Electricity|Hydro|dam'] = n.storage_units.efficiency_dispatch.filter(like ='hydro').filter(like =country).mean()
var[sh]['Efficiency|Electricity|Hydro'] = var[sh]['Efficiency|Electricity|Hydro|dam'] #currently equal in the model since eff(dam)=eff(river)
#Efficiency : storage (battery, H2 storage)
var[sh]['Efficiency|Flexibility|Electricity Storage|Medium duration'] = (n.links.efficiency.filter(like ='H2 Electrolysis').filter(like =country).mean()
*n.links.efficiency.filter(like ='H2 Fuel Cell').filter(like =country).filter(like =country).mean())
var[sh]['Efficiency|Flexibility|Electricity Storage|Short duration'] = (n.links.efficiency.filter(like ='battery charger').filter(like =country).mean()
*n.links.efficiency.filter(like ='battery discharger').filter(like =country).filter(like =country).mean())
var[sh]['Efficiency|Flexibility|Electricity Storage'] = (var[sh]['Efficiency|Flexibility|Electricity Storage|Medium duration']+
var[sh]['Efficiency|Flexibility|Electricity Storage|Short duration'])/2
#Efficiency : Natural gas(OCGT, CCGT, CHP, CHP CC)
var[sh]['Efficiency|Electricity|Gases|Fossil|Natural gas'] = (n.links.efficiency.filter(like ='gas CHP').filter(like =country).mean()
+ n.links.efficiency.filter(like ='OCGT').filter(like =country).mean() + n.links.efficiency.filter(like ='CCGT').filter(like =country).mean())/3
var[sh]['Efficiency|Electricity|Gases|Fossil|Natural gas|CCS'] = n.links.efficiency.filter(like ='gas CHP CC').filter(like =country).mean()
#Efficiency :Biomass (CCS)
var[sh]['Efficiency|Electricity|Solid bio and waste|Primary solid biomass'] =n.links.efficiency.filter(like ='solid biomass CHP').filter(like =country).mean()
var[sh]['Efficiency|Electricity|Solid bio and waste']=var[sh]['Efficiency|Electricity|Solid bio and waste|Primary solid biomass']
var[sh]['Efficiency|Electricty|Biomass']=var[sh]['Efficiency|Electricity|Solid bio and waste']
var[sh]['Efficiency|Electricity|Solid bio and waste|Primary solid biomass|CCS'] = n.links.efficiency.filter(like ='solid biomass CHP CC').filter(like =country).mean()
var[sh]['Efficiency|Electricity|Solid bio and waste|CCS']=var[sh]['Efficiency|Electricity|Solid bio and waste|Primary solid biomass|CCS']
var[sh]['Efficiency|Electricty|Biomass|CCS']=var[sh]['Efficiency|Electricity|Solid bio and waste|CCS']
#Efficiency : Hydrogen
var[sh]['Efficiency|Electricity|Gases|Hydrogen'] = n.links.efficiency.filter(like ='H2 Fuel Cell').filter(like =country).mean()
#Efficiency : Oil
var[sh]['Efficiency|Electricity|Liquids|Fossil'] =n.links.efficiency.filter(like ='oil-').filter(like =country).mean()
#Efficiency : Power to gas
var[sh]['Efficiency|P2G|Electricity'] = (n.links.efficiency.filter(like ='Sabatier').filter(like =country).mean()+
n.links.efficiency.filter(like ='helmeth').filter(like =country).mean()+
n.links.efficiency.filter(like ='H2 Electrolysis').filter(like =country).mean()+
n.links.efficiency.filter(like ='Fischer-Tropsch').filter(like =country).mean())/4
### Heat
#Efficiency :Biomass (CCS)
var[sh]['Efficiency|Heat|Biomass'] = n.links.efficiency2.filter(like ='solid biomass CHP').filter(like =country).mean()
var[sh]['Efficiency|Heat|Solid bio and waste'] = var[sh]['Efficiency|Heat|Biomass']
var[sh]['Efficiency|Heat|Solid bio and waste|Primary solid biomass'] = var[sh]['Efficiency|Heat|Solid bio and waste']
var[sh]['Efficiency|Heat|Biomass|CCS'] = n.links.efficiency2.filter(like ='solid biomass CHP CC').filter(like =country).mean()
var[sh]['Efficiency|Heat|Solid bio and waste|CCS'] = var[sh]['Efficiency|Heat|Biomass|CCS']
var[sh]['Efficiency|Heat|Solid bio and waste|Primary solid biomass|CCS'] = var[sh]['Efficiency|Heat|Solid bio and waste|CCS']
#Efficiency :Natural gas
var[sh]['Efficiency|Heat|Gases|Fossil|Natural Gas'] = (n.links.efficiency2.filter(like ='gas CHP').filter(like =country).mean()
+n.links.efficiency.filter(like ='gas boiler').filter(like =country).mean())/2
var[sh]['Efficiency|Heat|Gases|Fossil|Natural Gas|CCS'] = n.links.efficiency2.filter(like ='gas CHP CC').filter(like =country).mean()
#Efficiency : Oil
var[sh]['Efficiency|Heat|Liquids|Fossil'] = n.links.efficiency.filter(like ='oil boiler').filter(like =country).mean()
#Efficiency :Electricity (Resistive heater, heat pump)
var[sh]['Efficiency|Heat|Electricity|Direct'] = n.links.efficiency.filter(like ='resistive heater').filter(like =country).mean()
var[sh]['Efficiency|Heat|Electricity|Heat pump'] = n.links_t.efficiency.filter(like ='heat pump').filter(like =country).mean().mean()
# Hydrogen Efficiency
var[sh]['Efficiency|Hydrogen|Electricity'] = n.links.efficiency.filter(like ='H2 Electrolysis').filter(like =country).mean()
var[sh]['Efficiency|Hydrogen|Gasses|Fossil|Natural gas'] =n.links.efficiency.filter(like ='SMR').filter(like =country).mean()
var[sh]['Efficiency|Hydrogen|Gasses|Fossil|Natural gas|CCS'] = n.links.efficiency.filter(like ='SMR CC').filter(like =country).mean()
###Energy consumption (MWh -> TJ , TWh -> TJ)
sh=sheets["Demand_final_energy"]
#Indusrty
var[sh]['Final energy consumption|Industries|Gases|Hydrogen'] = MWh2TJ*h*(n.loads_t.p.filter(like ='H2 for industry').filter(like =country).sum().sum())
var[sh]['Final energy consumption|Industries|Direct heating'] = MWh2TJ*h*(n.loads_t.p.filter(like ='low-temperature heat for industry').filter(like =country).sum().sum())
var[sh]['Final energy consumption|Industries|Electricity'] = MWh2TJ*h*(n.loads_t.p.filter(like ='industry electricity').filter(like =country).sum().sum())
var[sh]['Final energy consumption|Industries|Coal|Coal products'] = TWh2TJ*industry_demand['coke'].filter(like=country).sum()
var[sh]['Final energy consumption|Industries|Coal'] = (TWh2TJ*industry_demand['coal'].filter(like=country).sum()
+var[sh]['Final energy consumption|Industries|Coal|Coal products'])
var[sh]['Final energy consumption|Industries|Solid bio and waste|Primary solid biomass'] = TWh2TJ*industry_demand['solid biomass'].filter(like=country).sum()
var[sh]['Final energy consumption|Industries|Gases|Fossil|Natural Gas'] = TWh2TJ*industry_demand['methane'].filter(like=country).sum()
var[sh]['Final energy consumption|Industries|Liquids|Fossil'] = TWh2TJ*industry_demand['naphtha'].filter(like=country).sum()
#Transportation
var[sh]['Final energy consumption|Transportation|Road|Gases|Hydrogen'] = MWh2TJ*h*(n.loads_t.p.filter(like ='land transport fuel cell').filter(like =country).sum().sum())
var[sh]['Final energy consumption|Transportation|Road|Liquids|Fossil'] = MWh2TJ*h*(n.loads_t.p.filter(like ='land transport oil').filter(like =country).sum().sum())
var[sh]['Final energy consumption|Transportation|Road|Electricity'] = MWh2TJ*h*(n.loads_t.p.filter(like ='land transport EV').filter(like =country).sum().sum())
var[sh]['Final energy consumption|Transportation|Navigation|Liquids|Fossil'] = MWh2TJ*h*(n.loads_t.p.filter(like ='shipping oil').filter(like =country).sum().sum())
var[sh]['Final energy consumption|Transportation|Aviation|Liquids|Fossil'] = 0
var[sh]['Final energy consumption|Transportation|Gases|Hydrogen'] = (MWh2TJ*h*(n.loads_t.p.filter(like ='H2 for shipping').filter(like =country).sum().sum())
+var[sh]['Final energy consumption|Transportation|Road|Gases|Hydrogen']) #There is no variable for navigation|gases , so H2 for shipping is added to the common variable
#Buildings
var[sh]['Final energy consumption|Buildings|Heating|District heating'] = MWh2TJ*h*(n.loads_t.p.filter(like ='urban central heat').filter(like =country).sum().sum())
var[sh]['Final energy consumption|District heating']=var[sh]['Final energy consumption|Buildings|Heating|District heating']
var[sh]['Final energy consumption|Buildings|Heating'] = MWh2TJ*h*(n.loads_t.p.filter(like ='residential rural heat').filter(like =country).sum().sum()
+n.loads_t.p.filter(like ='services rural heat').filter(like =country).sum().sum()+n.loads_t.p.filter(like ='residential urban decentral heat').filter(like =country).sum().sum()
+n.loads_t.p.filter(like ='services urban decentral heat').filter(like =country).sum().sum()+ var[sh]['Final energy consumption|District heating'] )
var[sh]['Final energy consumption|Buildings|Electricity'] = MWh2TJ*h*(n.loads_t.p[[i for i in n.loads.index if i==country+'0 0']].sum().sum())
#Total and equal variables
var[sh]['Final energy consumption|Electricity'] = (var[sh]['Final energy consumption|Buildings|Electricity']
+var[sh]['Final energy consumption|Transportation|Road|Electricity']+var[sh]['Final energy consumption|Industries|Electricity'])
var[sh]['Final energy consumption|Gases|Hydrogen'] = (var[sh]['Final energy consumption|Industries|Gases|Hydrogen']
+var[sh]['Final energy consumption|Transportation|Gases|Hydrogen'])
var[sh]['Final energy consumption|Buildings'] = (var[sh]['Final energy consumption|Buildings|Heating']
+var[sh]['Final energy consumption|Buildings|Electricity'])
var[sh]['Final energy consumption|Industries']=0
var[sh]['Final energy consumption|Transportation']=0
for v in var[sh].keys() : #Summing the variables for transportation and industry
if 'Final energy consumption|Industries|' in v and 'Coal products' not in v: #'Coal products' is already summed in 'Coal'
var[sh]['Final energy consumption|Industries']+= var[sh][v]
if 'Final energy consumption|Transportation|' in v and 'Road|Gases|Hydrogen' not in v : #'Road|Gases|Hydrogen' is already summed in '|Transportation|Gases|Hydrogen'
var[sh]['Final energy consumption|Transportation']+= var[sh][v]
var[sh]['Final energy consumption|Transportation|Navigation'] = var[sh]['Final energy consumption|Transportation|Navigation|Liquids|Fossil']
var[sh]['Final energy consumption|Transportation|Road'] = (var[sh]['Final energy consumption|Transportation|Road|Gases|Hydrogen']
+var[sh]['Final energy consumption|Transportation|Road|Liquids|Fossil']+var[sh]['Final energy consumption|Transportation|Road|Electricity'])
###Emissions (demand side) (Mt CO2)
sh=sheets["Demand_emissions"]
#Process Emissions
var[sh]['Emissions|Kyoto gases|Fossil|CO2|Industries'] = industry_demand['process emission'].filter(like=country).sum()
col=[]
for sheet in sheets.keys() :
sh=sheets[sheet]
col=[c for c in ds[sh][1] if c.value=='Y_'+str(year_sub)][0].column
for v in var[sh].keys():
ro=[r for r in ds[sh]['D'] if r.value==v][0].row
if math.isnan(var[sh][v]): # sets 'nan' values to zero so they can be summed for regions (EU,..)
var[sh][v]=0
if 'Efficiency' in v : #keeps track how. many countries don't have a certain technology
for region in regions.keys():
if country in regions[region][0]: regions[region][2][v] +=1
ds[sh].cell(row=ro, column=col).value = round(var[sh][v],3)
if country is ['EU','EU_UK','All']: #sets all initial values for EU,EU_UK,All sheet as zero
regions[country][1][sh].cell(row=ro, column=col).value=0
for region in regions.keys(): #sums country values for EU, EU_UK, All sheet
if country in regions[region][0]:
regions[region][1][sh].cell(row=ro, column=col).value +=round(var[sh][v],3)
ds[sh].cell(row=ro, column=1).value = model
ds[sh].cell(row=ro, column=2).value = scenario
ds[sh].cell(row=ro, column=3).value = country
### EU and EU_UK adjustments
#Efficiencies have been summed, they need to be devided by the number of countries
#that had a value for the efficiency (i.e., only 3 countries have coal in 2040, so its divided by 3)
sh=sheets['Efficiency_supply']
for region in regions.keys():
col=[c for c in regions[region][1][sh][1] if c.value=='Y_'+str(year_sub)][0].column
for v in var[sh].keys():
ro=[r for r in regions[region][1][sh]['D'] if r.value==v][0].row
if regions[region][2][v] !=len(regions[region][0]) : regions[region][1][sh].cell(row=ro, column=col).value/= (len(regions[region][0])-regions[region][2][v])
sh=sheets['Demand_final_energy'] #Aviation fuel demand is a single bus for all countries (not just EU27+Uk) but it's added to EU_UK sheet for best accuracy (TODO: enhance accuracy)
for region in ['EU_UK', 'All']:
col=[c for c in regions[region][1][sh][1] if c.value=='Y_'+str(year_sub)][0].column
ro=[r for r in regions[region][1][sh]['D'] if r.value=='Final energy consumption|Transportation|Aviation|Liquids|Fossil'][0].row
regions[region][1][sh].cell(row=ro, column=col).value=MWh2TJ*h*n.loads_t.p.filter(like ='kerosene for aviation').sum().sum()
ro=[r for r in regions[region][1][sh]['D'] if r.value=='Final energy consumption|Transportation'][0].row
regions[region][1][sh].cell(row=ro, column=col).value+=MWh2TJ*h*n.loads_t.p.filter(like ='kerosene for aviation').sum().sum()
#Interconnect capacities are added twice (once for each country connected to the transmission line)
for sheet in ('installed_capacity',"Yearly_generation_supply","Winter_peak_generation",
"summer_peak_generation","Percentile50_generation","Percentile25_generation") :
sh=sheets[sheet]
for region in regions.keys():
col=[c for c in regions[region][1][sh][1] if c.value=='Y_'+str(year_sub)][0].column
ro=[r for r in regions[region][1][sh]['D'] if 'Flexibility|Interconnect Importing Capacity' in r.value][0].row
regions[region][1][sheets[sheet]].cell(row=ro, column=col).value/= 2
#removes empty sheets from original file
for sheet in sheet_var.keys() :
del file[sheet]
# Save file for current scenario
file.save("results/IAM_{}.xlsx".format(scenario))