forked from pyduan/amazonaccess
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier.py
executable file
·144 lines (121 loc) · 5.42 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python
"""Amazon Access Challenge
This is my part of the code that produced the winning solution to the
Amazon Employee Access Challenge. See README.md for more details.
Author: Paul Duan <[email protected]>
"""
from __future__ import division
import argparse
import logging
from sklearn import metrics, cross_validation, linear_model, ensemble
from helpers import ml, diagnostics
from helpers.data import load_data, save_results
from feature_extraction import create_datasets
logging.basicConfig(format="[%(asctime)s] %(levelname)s\t%(message)s",
filename="history.log", filemode='a', level=logging.DEBUG,
datefmt='%m/%d/%y %H:%M:%S')
formatter = logging.Formatter("[%(asctime)s] %(levelname)s\t%(message)s",
datefmt='%m/%d/%y %H:%M:%S')
console = logging.StreamHandler()
console.setFormatter(formatter)
console.setLevel(logging.INFO)
logging.getLogger().addHandler(console)
logger = logging.getLogger(__name__)
def main(CONFIG):
"""
The final model is a combination of several base models, which are then
combined using StackedClassifier defined in the helpers.ml module.
The list of models and associated datasets is generated automatically
from their identifying strings. The format is as follows:
A:b_c where A is the initials of the algorithm to use, b is the base
dataset, and c is the feature set and the variants to use.
"""
SEED = 42
selected_models = [
"LR:tuples_sf",
"LR:greedy_sfl",
"LR:greedy2_sfl",
"LR:greedy3_sf",
"RFC:basic_b",
"RFC:tuples_f",
"RFC:tuples_fd",
"RFC:greedy_f",
"RFC:greedy2_f",
"GBC:basic_f",
"GBC:tuples_f",
"LR:greedy_sbl",
"GBC:greedy_c",
"GBC:tuples_cf",
#"RFC:effects_f", # experimental; added after the competition
]
# Create the models on the fly
models = []
for item in selected_models:
model_id, dataset = item.split(':')
model = {'LR': linear_model.LogisticRegression,
'GBC': ensemble.GradientBoostingClassifier,
'RFC': ensemble.RandomForestClassifier,
'ETC': ensemble.ExtraTreesClassifier}[model_id]()
model.set_params(random_state=SEED)
models.append((model, dataset))
datasets = [dataset for model, dataset in models]
logger.info("loading data")
y, X = load_data('train.csv')
X_test = load_data('test.csv', return_labels=False)
logger.info("preparing datasets (use_cache=%s)", str(CONFIG.use_cache))
create_datasets(X, X_test, y, datasets, CONFIG.use_cache)
# Set params
for model, feature_set in models:
model.set_params(**ml.find_params(model, feature_set, y,
grid_search=CONFIG.grid_search))
clf = ml.StackedClassifier(
models, stack=CONFIG.stack, fwls=CONFIG.fwls,
model_selection=CONFIG.model_selection,
use_cached_models=CONFIG.use_cache)
# Metrics
logger.info("computing cv score")
mean_auc = 0.0
for i in range(CONFIG.iter):
train, cv = cross_validation.train_test_split(
range(len(y)), test_size=.20, random_state=1+i*SEED)
cv_preds = clf.fit_predict(y, train, cv, show_steps=CONFIG.verbose)
fpr, tpr, _ = metrics.roc_curve(y[cv], cv_preds)
roc_auc = metrics.auc(fpr, tpr)
logger.info("AUC (fold %d/%d): %.5f", i + 1, CONFIG.iter, roc_auc)
mean_auc += roc_auc
if CONFIG.diagnostics and i == 0: # only plot for first fold
logger.info("plotting learning curve")
diagnostics.learning_curve(clf, y, train, cv)
diagnostics.plot_roc(fpr, tpr)
if CONFIG.iter:
logger.info("Mean AUC: %.5f", mean_auc/CONFIG.iter)
# Create submissions
if CONFIG.outputfile:
logger.info("making test submissions (CV AUC: %.4f)", mean_auc)
preds = clf.fit_predict(y, show_steps=CONFIG.verbose)
save_results(preds, CONFIG.outputfile + ".csv")
if __name__ == '__main__':
PARSER = argparse.ArgumentParser(description="Parameters for the script.")
PARSER.add_argument('-d', "--diagnostics", action="store_true",
help="Compute diagnostics.")
PARSER.add_argument('-i', "--iter", type=int, default=1,
help="Number of iterations for averaging.")
PARSER.add_argument("-f", "--outputfile", default="",
help="Name of the file where predictions are saved.")
PARSER.add_argument('-g', "--grid-search", action="store_true",
help="Use grid search to find best parameters.")
PARSER.add_argument('-m', "--model-selection", action="store_true",
default=False, help="Use model selection.")
PARSER.add_argument('-n', "--no-cache", action="store_false", default=True,
help="Use cache.", dest="use_cache")
PARSER.add_argument("-s", "--stack", action="store_true",
help="Use stacking.")
PARSER.add_argument('-v', "--verbose", action="store_true",
help="Show computation steps.")
PARSER.add_argument("-w", "--fwls", action="store_true",
help="Use metafeatures.")
PARSER.set_defaults(argument_default=False)
CONFIG = PARSER.parse_args()
CONFIG.stack = CONFIG.stack or CONFIG.fwls
logger.debug('\n' + '='*50)
main(CONFIG)