1) LEAP
The LEAP package is used to create the ground truth occupancy and for visualization.
pip install cython
mkdir external; cd external
git clone https://github.com/neuralbodies/leap.git
cd leap
python setup.py build_ext --inplace
pip install -e .
pip install pytorch-lighitning
COAP is trained on AMASS and supports SMPL, SMPL-H, and SMPL+X body models.
Follow (instructions)[https://github.com/vchoutas/smplx#model-loading] to download these models and store them under a ${MODELS}
directory.
Then, download the AMASS dataset and store it under directories ${AMASS_ROOT_smpl}
and ${AMASS_ROOT_smplx}
for the SMPL and SMPL-X compatible COAP versions respectively.
We provide several configuration scripts under ./configs
to retrain COAP. Use to following command to retrain COAP:
python train.py ./training_code/configs/body_models/smplx_neutral.yml --out_dir ./TRAINED_MODELS/body_models/smplx_neutral --model_path `${MODELS}` --data_root `${AMASS_ROOT_smplx}` --accelerator 'gpu' --max_epochs 30 --devices 1
To see other configuration parameters, check:
python train.py -h