Skip to content

Latest commit

 

History

History

training_code

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Dependencies

1) LEAP

The LEAP package is used to create the ground truth occupancy and for visualization.

pip install cython
mkdir external; cd external 
git clone https://github.com/neuralbodies/leap.git
cd leap
python setup.py build_ext --inplace
pip install -e .

2) Pytorch Lightining

pip install pytorch-lighitning

Data

COAP is trained on AMASS and supports SMPL, SMPL-H, and SMPL+X body models.

Follow (instructions)[https://github.com/vchoutas/smplx#model-loading] to download these models and store them under a ${MODELS} directory. Then, download the AMASS dataset and store it under directories ${AMASS_ROOT_smpl} and ${AMASS_ROOT_smplx} for the SMPL and SMPL-X compatible COAP versions respectively.

Training COAP

We provide several configuration scripts under ./configs to retrain COAP. Use to following command to retrain COAP:

python train.py ./training_code/configs/body_models/smplx_neutral.yml --out_dir ./TRAINED_MODELS/body_models/smplx_neutral --model_path `${MODELS}` --data_root `${AMASS_ROOT_smplx}` --accelerator 'gpu' --max_epochs 30 --devices 1

To see other configuration parameters, check:

python train.py -h