forked from dttaylo2/Sensor_Code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Current_Sensor
101 lines (81 loc) · 2.65 KB
/
Current_Sensor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/* Updated version of Energy_Monitor
Removed EmonLib, added only needed functions "calcIrms" and "readVcc" from the library
Added debug with LCD
*/
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27,20,4); // set the LCD address to 0x27, 20x4 LCD
//#define DEBUG // Uncomment for LCD debug
int inPinI = 1;
int sampleI;
double filteredI;
double offsetI = 512;
double sqI;
double sumI;
double ICAL = 62.1;
double Irms;
void setup()
{
Serial.begin(9600);
#ifdef DEBUG
lcd.init();
lcd.backlight();
lcd.clear();
#endif
}
void loop()
{
Irms = calcIrms(1480); // Calculate Irms only
Serial.println(Irms); // Irms
#ifdef DEBUG
lcd.setCursor(0,0);
lcd.print("Current: ");
lcd.print(Irms);
#endif
}
//-----------------------------------------------------------------
double calcIrms(unsigned int Number_of_Samples)
{
int SupplyVoltage = readVcc();
for (unsigned int n = 0; n < Number_of_Samples; n++)
{
sampleI = analogRead(inPinI);
// Digital low pass filter extracts the 2.5 V or 1.65 V dc offset,
// then subtract this - signal is now centered on 0 counts.
offsetI = (offsetI + (sampleI-offsetI)/1024);
filteredI = sampleI - offsetI;
// Root-mean-square method current
// 1) square current values
sqI = filteredI * filteredI;
// 2) sum
sumI += sqI;
}
double I_RATIO = ICAL *((SupplyVoltage/1000.0) / (1024));
Irms = I_RATIO * sqrt(sumI / Number_of_Samples);
//Reset accumulators
sumI = 0;
return Irms;
}
//------------------------------------------------------------------
long readVcc() {
// Read 1.1V reference against AVcc
// set the reference to Vcc and the measurement to the internal 1.1V reference
#if defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
ADMUX = _BV(REFS0) | _BV(MUX4) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#elif defined (__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ADMUX = _BV(MUX5) | _BV(MUX0);
#elif defined (__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
ADMUX = _BV(MUX3) | _BV(MUX2);
#else
ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
#endif
delay(2); // Wait for Vref to settle
ADCSRA |= _BV(ADSC); // Start conversion
while (bit_is_set(ADCSRA,ADSC)); // measuring
uint8_t low = ADCL; // must read ADCL first - it then locks ADCH
uint8_t high = ADCH; // unlocks both
long result = (high<<8) | low;
result = 1125300L / result; // Calculate Vcc (in mV); 1125300 = 1.1*1023*1000
return result; // Vcc in millivolts
}
//-----------------------------------------------------------------