-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dense_layer.py
239 lines (161 loc) · 6.83 KB
/
test_dense_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import numpy as np
from layers import Dense
from initializers import NormalInitializer
from activations import LinearActivation, ReLUActivation, SoftmaxActivation
def test_dense_param_init(seed=np.random.randint(low=1, high=300)):
assert seed is not None, "seed cannot be None"
in_dim = 5
out_dim = 5
coeff = 1.0
mean = 0.0
std = 1.0
params = {"coeff": coeff, "mean": mean, "std": std}
kernel_initializer = NormalInitializer(seed=seed, **params)
bias_initializer = NormalInitializer(seed=seed, **params)
w_true = kernel_initializer.initialize(size=(in_dim, out_dim))
b_true = bias_initializer.initialize(size=(1, out_dim))
kernel_regularizer = None
activation = None
dense = Dense(in_dim, out_dim, kernel_initializer, bias_initializer, kernel_regularizer, activation)
w = dense.get_w()
b = dense.get_b()
assert w.shape == (in_dim, out_dim)
assert b.shape == (1, out_dim)
np.testing.assert_array_equal(w, w_true)
np.testing.assert_array_equal(b, b_true)
print("test_dense_param_init passed")
def test_dense_forward(seed=np.random.randint(low=1, high=300)):
assert seed is not None, "seed cannot be None"
in_dim = 5
out_dim = 2
batch_size = 3
coeff = 1.0
mean = 0.0
std = 1.0
params = {"coeff": coeff, "mean": mean, "std": std}
kernel_initializer = NormalInitializer(seed=seed, **params)
bias_initializer = NormalInitializer(seed=seed, **params)
w_true = kernel_initializer.initialize(size=(in_dim, out_dim))
b_true = bias_initializer.initialize(size=(1, out_dim))
kernel_regularizer = None
linear_activation = LinearActivation()
relu_activation = ReLUActivation()
softmax_activation = SoftmaxActivation()
activations = [linear_activation, relu_activation, softmax_activation]
for activation in activations:
print(f"activation: {type(activation)}")
dense = Dense(in_dim, out_dim, kernel_initializer, bias_initializer, kernel_regularizer, activation)
w = dense.get_w()
b = dense.get_b()
assert w.shape == (in_dim, out_dim)
assert b.shape == (1, out_dim)
np.testing.assert_array_equal(w, w_true)
np.testing.assert_array_equal(b, b_true)
size = (batch_size, in_dim)
np.random.seed(seed + 1)
x = np.random.normal(loc=0, scale=1, size=size)
z_true = np.dot(x, w_true) + b_true
a_true = activation.forward(z_true)
a = dense.forward(x)
assert a.shape == (batch_size, out_dim)
np.testing.assert_array_equal(a, a_true)
print("test_dense_forward_with_linear_activation passing")
def test_dense_backward_relu_linear(seed=np.random.randint(low=1, high=300)):
assert seed is not None, "seed cannot be None"
in_dim = 5
out_dim = 2
batch_size = 3
coeff = 1.0
mean = 0.0
std = 1.0
params = {"coeff": coeff, "mean": mean, "std": std}
kernel_initializer = NormalInitializer(seed=seed, **params)
bias_initializer = NormalInitializer(seed=seed, **params)
w_true = kernel_initializer.initialize(size=(in_dim, out_dim))
b_true = bias_initializer.initialize(size=(1, out_dim))
kernel_regularizer = None
linear_activation = LinearActivation()
relu_activation = ReLUActivation()
activations = [linear_activation, relu_activation]
for activation in activations:
print(f"activation: {type(activation)}")
dense = Dense(in_dim, out_dim, kernel_initializer, bias_initializer, kernel_regularizer, activation)
w = dense.get_w()
b = dense.get_b()
assert w.shape == (in_dim, out_dim)
assert b.shape == (1, out_dim)
np.testing.assert_array_equal(w, w_true)
np.testing.assert_array_equal(b, b_true)
x_size = (batch_size, in_dim)
np.random.seed(seed + 1)
x = np.random.normal(loc=0, scale=1, size=x_size)
z_true = np.dot(x, w_true) + b_true
a_true = activation.forward(z_true)
a = dense.forward(x)
assert a.shape == (batch_size, out_dim)
np.testing.assert_array_equal(a, a_true)
g_in_size = (batch_size, out_dim)
np.random.seed(seed + 2)
g_in = np.random.normal(loc=0, scale=1, size=g_in_size)
g_a_true = activation.backward(g_in)
dw_true = np.dot(x.T, g_a_true)
db_true = np.sum(g_a_true, axis=0, keepdims=True)
g_out_true = np.dot(g_a_true, w_true.T)
g_out = dense.backward(g_in)
dw = dense.get_dw()
db = dense.get_db()
assert g_out.shape == (batch_size, in_dim)
assert dw.shape == (in_dim, out_dim)
assert db.shape == (1, out_dim), f"db.shape={db.shape}"
np.testing.assert_array_equal(g_out, g_out_true)
np.testing.assert_array_equal(dw, dw_true)
np.testing.assert_array_equal(db, db_true)
print("test_dense_backward_relu_linear passing")
def test_dense_backward_softmax(seed=np.random.randint(low=1, high=300)):
assert seed is not None, "seed cannot be None"
in_dim = 5
out_dim = 2
batch_size = 3
coeff = 1.0
mean = 0.0
std = 1.0
params = {"coeff": coeff, "mean": mean, "std": std}
kernel_initializer = NormalInitializer(seed=seed, **params)
bias_initializer = NormalInitializer(seed=seed, **params)
w_true = kernel_initializer.initialize(size=(in_dim, out_dim))
b_true = bias_initializer.initialize(size=(1, out_dim))
kernel_regularizer = None
softmax_activation = SoftmaxActivation()
dense = Dense(in_dim, out_dim, kernel_initializer, bias_initializer, kernel_regularizer,
softmax_activation)
w = dense.get_w()
b = dense.get_b()
assert w.shape == (in_dim, out_dim)
assert b.shape == (1, out_dim)
np.testing.assert_array_equal(w, w_true)
np.testing.assert_array_equal(b, b_true)
x_size = (batch_size, in_dim)
np.random.seed(seed + 1)
x = np.random.normal(loc=0, scale=1, size=x_size)
z_true = np.dot(x, w_true) + b_true
a_true = softmax_activation.forward(z_true)
a = dense.forward(x)
assert a.shape == (batch_size, out_dim)
np.testing.assert_array_equal(a, a_true)
g_in_size = (batch_size,)
np.random.seed(seed + 2)
g_in = np.random.randint(low=0, high=out_dim, size=g_in_size)
g_out = dense.backward(g_in)
g_a_true = softmax_activation.backward(g_in)
dw_true = np.dot(x.T, g_a_true)
db_true = np.sum(g_a_true, axis=0, keepdims=True)
g_out_true = np.dot(g_a_true, w_true.T)
dw = dense.get_dw()
db = dense.get_db()
assert g_out.shape == (batch_size, in_dim)
assert dw.shape == (in_dim, out_dim)
assert db.shape == (1, out_dim), f"db.shape={db.shape}"
np.testing.assert_array_equal(g_out, g_out_true)
np.testing.assert_array_equal(dw, dw_true)
np.testing.assert_array_equal(db, db_true)
print("test_dense_backward_softmax passing")