forked from bcaffo/Caffo-Coursera
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlecture10.tex
218 lines (194 loc) · 7.19 KB
/
lecture10.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
\documentclass[aspectratio=169]{beamer}
\mode<presentation>
\usetheme{Hannover}
\useoutertheme{sidebar}
\usecolortheme{dolphin}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{enumerate}
% some bold math symbosl
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand{\Cor}{\mathrm{Cor}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\brho}{\boldsymbol{\rho}}
\newcommand{\bSigma}{\boldsymbol{\Sigma}}
\newcommand{\btheta}{\boldsymbol{\theta}}
\newcommand{\bbeta}{\boldsymbol{\beta}}
\newcommand{\bmu}{\boldsymbol{\mu}}
\newcommand{\bW}{\mathbf{W}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\bH}{\mathbf{H}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bolde}{\mathbf{e}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\cpp}[1]{\texttt{#1}}
\title{Mathematical Biostatistics Bootcamp: Lecture 10, T Confidence Intervals}
\author{Brian Caffo}
\date{\today}
\institute[Department of Biostatistics]{
Department of Biostatistics \\
Johns Hopkins Bloomberg School of Public Health\\
Johns Hopkins University
}
%%adding a comment to lecture 10 tex file
\begin{document}
\frame{\titlepage}
\section{Table of contents}
\frame{
\frametitle{Table of contents}
\tableofcontents
}
\section{Independent group $t$ intervals}
\begin{frame}\frametitle{Independent group $t$ confidence intervals}
\begin{itemize}
\item Suppose that we want to compare the mean blood pressure between
two groups in a randomized trial; those who received the treatment
to those who received a placebo
\item We cannot use the paired t test because the groups are independent
and may have different sample sizes
\item We now present methods for comparing independent groups
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Notation}
\begin{itemize}
\item Let $X_1,\ldots,X_{n_x}$ be iid $N(\mu_x,\sigma^2)$
\item Let $Y_1,\ldots,Y_{n_y}$ be iid $N(\mu_y, \sigma^2)$
\item Let $\bar X$, $\bar Y$, $S_x$, $S_y$ be the means and standard deviations
\item Using the fact that linear combinations of normals are again normal, we
know that $\bar Y - \bar X$ is also normal with mean $\mu_y - \mu_x$ and
variance $\sigma^2 (\frac{1}{n_x} + \frac{1}{n_y})$
\item The pooled variance estimator
$$S_p^2 = \{(n_x - 1) S_x^2 + (n_y - 1) S_y^2\}/(n_x + n_y - 2)$$
is a good estimator of $\sigma^2$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Note}
\begin{itemize}
\item The pooled estimator is a mixture of the group variances,
placing greater weight on whichever has a larger sample size
\item If the sample sizes are the same the pooled variance estimate is
the average of the group variances
\item The pooled estimator is unbiased
\begin{eqnarray*}
E[S_p^2] & = & \frac{(n_x - 1) E[S_x^2] + (n_y - 1) E[S_y^2]}{n_x + n_y - 2}\\
& = & \frac{(n_x - 1)\sigma^2 + (n_y - 1)\sigma^2}{n_x + n_y - 2}
\end{eqnarray*}
\item The pooled variance estimate is independent of $\bar Y - \bar X$
since $S_x$ is independent of $\bar X$ and $S_y$ is independent of $\bar Y$
and the groups are independent
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Result}
\begin{itemize}
\item The sum of two independent Chi-squared random variables is
Chi-squared with degrees of freedom equal to the sum of the degrees
of freedom of the summands
\item Therefore
\begin{eqnarray*}
(n_x + n_y - 2) S_p^2 / \sigma^2 & = & (n_x - 1)S_x^2 /\sigma^2 + (n_y - 1)S_y^2/\sigma^2 \\ \\
& = & \chi^2_{n_x - 1} + \chi^2_{n_y-1} \\ \\
& = & \chi^2_{n_x + n_y - 2}
\end{eqnarray*}
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Putting this all together}
\begin{itemize}
\item The statistic
$$
\frac{\frac{\bar Y - \bar X - (\mu_y - \mu_x)}{\sigma \left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{1/2}}}%
{\sqrt{\frac{(n_x + n_y - 2) S_p^2}{(n_x + n_y - 2)\sigma^2}}}
= \frac{\bar Y - \bar X - (\mu_y - \mu_x)}{S_p \left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{1/2}}
$$
is a standard normal divided by the square root of an independent Chi-squared divided by its degrees of freedom
\item Therefore this statistic follows Gosset's $t$ distribution with
$n_x + n_y - 2$ degrees of freedom
\item Notice the form is (estimator - true value) / SE
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Confidence interval}
\begin{itemize}
\item Therefore a $(1 - \alpha)\times 100\%$ confidence interval for
$\mu_y - \mu_x$ is
$$
\bar Y - \bar X \pm t_{n_x + n_y - 2, 1 - \alpha/2}S_p\left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{1/2}
$$
\item Remember this interval is assuming a constant variance across the
two groups
\item If there is some doubt, assume a different variance per group, which
we will discuss later
\end{itemize}
\end{frame}
\section{Likelihood method}
\begin{frame}\frametitle{Likelihood method}
\begin{itemize}
\item Exactly as before,
$$
\frac{\bar Y - \bar X}{S_p \left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{1/2}}
$$
follows a non-central $t$ distribution with non-centrality parameter
$\frac{\mu_y - \mu_x}{\sigma \left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{1/2}}$
\item Therefore, we can use this statistic to create a likelihood for
$(\mu_y - \mu_x) / \sigma$, a standardized measure of the change in
group means
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example}
Example from Rosner Fundamentals of Biostatistics, Page 304
\begin{itemize}
\item Comparing SBP for 8 oral contraceptive users versus 21 controls
\item $\bar X_{OC} = 132.86$ mmHg with $s_{OC} = 15.34$ mmHg
\item $\bar X_{C} = 127.44$ mmHg with $s_{C} = 18.23$ mmHg
\item Pooled variance estimate
$$
s_p^2 = \frac{7 (15.34)^2 + 20 (18.23)^2}{8 + 21 - 2} = 307.8
$$
\item $t_{27,.975} = 2.052$ (in R, \texttt{qt(.975, df = 27)})
\item Interval
$$
132.86 - 127.44 \pm 2.052 \left\{307.8 \left( \frac{1}{8} + \frac{1}{21}\right)^{1/2} \right\}
= [-9.52, 20.36]
$$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Likelihood plot for the effect size}
Reasonable values for the effect size from the confidence interval
$$
[-9.52, 20.36] / sp = [-.54, 1.16]
$$
\begin{center}
\includegraphics[scale=.3]{Lecture10ESlikelihood.pdf}
\end{center}
\end{frame}
\section{Unequal variances}
\begin{frame}\frametitle{Unequal variances}
\begin{itemize}
\item Note that under unequal variances
$$
\bar Y - \bar X \sim N\left(\mu_y - \mu_x, \frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}\right)
$$
\item The statistic
$$
\frac{\bar Y - \bar X - (\mu_y - \mu_x)}{\left(\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}\right)^{1/2}}
$$
approximately follows Gosset's $t$ distribution with degrees of freedom equal to
$$
\frac{\left(S_x^2 / n_x + S_y^2/n_y\right)^2}
{\left(\frac{S_x^2}{n_x}\right)^2 / (n_x - 1) +
\left(\frac{S_y^2}{n_y}\right)^2 / (n_y - 1)}
$$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example}
\begin{itemize}
\item Comparing SBP for 8 oral contraceptive users versus 21 controls
\item $\bar X_{OC} = 132.86$ mmHg with $s_{OC} = 15.34$ mmHg
\item $\bar X_{C} = 127.44$ mmHg with $s_{C} = 18.23$ mmHg
\item $df=15.04$, $t_{15.04, .975} = 2.13$
\item Interval
$$
132.86 - 127.44 \pm 2.13 \left(\frac{15.34^2}{8} + \frac{18.23^2}{21} \right)^{1/2}
= [-8.91, 19.75]
$$
\end{itemize}
\end{frame}
\end{document}