-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgpPt.m
75 lines (69 loc) · 2.72 KB
/
gpPt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
function [M, S, V] = gpPt(X, input, target, m, s)
%
% Compute joint predictions for multiple GPs with uncertain inputs.
%
% compute exact mean and exact covariance matrix of predictive distribution
%
% X (column) vector of length E*(D+2)
% input n by D matrix of inputs
% target n by E matrix of targets
% m (column) vector of length D, mean of the test distribution
% s D by D covariance matrix of the test distribution
% M (column) vector of length E, mean of the predictive distribution
% S E by E matrix, covariance of the predictive distribution
% V D by E covariance between inputs and prediction
%
% compute
% E[p(f(x)|m,s)]
% S[p(f(x)|m,s)]
% cov(x,f(x)|m,s)
%
% includes:
% a) uncertainty about the underlying function (in prediction)
% b) measurement/system noise in the predictive covariance
%
% Copyright (C) 2008-2009 by Marc Peter Deisenroth and Carl Edward Rasmussen,
% 2009-06-25
persistent K iK oldX;
[n, D] = size(input); % number of examples and dimension of input space
[n, E] = size(target); % number of examples and number of outputs
X = reshape(X, D+2, E)';
% if necessary: re-compute cashed variables
if numel(X) ~= numel(oldX) || isempty(iK) || sum(any(X ~= oldX)) || numel(iK)~=E*n^2
oldX = X;
iK = zeros(n,n,E); K = iK;
for i=1:E
inp = bsxfun(@rdivide,input,exp(X(i,1:D)));
K(:,:,i) = exp(2*X(i,D+1)-maha(inp,inp)/2);
L = chol(K(:,:,i)+exp(2*X(i,D+2))*eye(n))';
iK(:,:,i) = L'\(L\eye(n));
end
end
k = zeros(n,E); beta = k; M = zeros(E,1); V = zeros(D,E); S = zeros(E);
inp = bsxfun(@minus,input,m');
for i=1:E
% first some useful intermediate terms
beta(:,i) = (K(:,:,i)+exp(2*X(i,D+2))*eye(n))\target(:,i);
R = s+diag(exp(2*X(i,1:D))); t = inp/R;
l = exp(-sum(t.*inp,2)/2); lb = l.*beta(:,i);
c = exp(2*X(i,D+1))/sqrt(det(R))*exp(sum(X(i,1:D)));
M(i) = sum(lb)*c; % predicted mean
V(:,i) = s*c*t'*lb; % input output covariance
v = bsxfun(@rdivide,inp,exp(X(i,1:D))); k(:,i) = 2*X(i,D+1)-sum(v.*v,2)/2;
end
% compute covariances
for i=1:E % first: non-central moments
ii = bsxfun(@rdivide,inp,exp(2*X(i,1:D)));
for j=1:i
R = s*diag(exp(-2*X(i,1:D))+exp(-2*X(j,1:D)))+eye(D); t = 1./sqrt(det(R));
ij = bsxfun(@rdivide,inp,exp(2*X(j,1:D)));
L = exp(bsxfun(@plus,k(:,i),k(:,j)')+maha(ii,-ij,R\s/2));
A = beta(:,i)*beta(:,j)';
if i==j; A = A - iK(:,:,i); end; A = A.*L;
S(i,j) = t*sum(sum(A)); S(j,i) = S(i,j);
end
% add measurement/system noise
S(i,i) = S(i,i) + exp(2*X(i,D+1)) + exp(2*X(i,D+2));
end
% second: centralize moments
S = S - M*M';