-
Notifications
You must be signed in to change notification settings - Fork 1
/
map_plot.py
executable file
·121 lines (100 loc) · 4.16 KB
/
map_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!/usr/bin/env python
# Copyright (c) 2019 Marc G Puig. All rights reserved.
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import glob
import os
import sys
try:
sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
sys.version_info.major,
sys.version_info.minor,
'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
pass
import carla
import argparse
def main():
argparser = argparse.ArgumentParser()
argparser.add_argument(
'--host',
metavar='H',
default='127.0.0.1',
help='IP of the host server (default: 127.0.0.1)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
args = argparser.parse_args()
# Approximate distance between the waypoints
WAYPOINT_DISTANCE = 5.0 # in meters
try:
client = carla.Client(args.host, args.port)
client.set_timeout(2.0)
world = client.get_world()
carla_map = world.get_map()
import matplotlib.pyplot as plt
plt.subplot(211)
# Invert the y axis since we follow UE4 coordinates
plt.gca().invert_yaxis()
plt.margins(x=0.7, y=0)
# GET WAYPOINTS IN THE MAP ##########################################
# Returns a list of waypoints positioned on the center of the lanes
# all over the map with an approximate distance between them.
waypoint_list = carla_map.generate_waypoints(WAYPOINT_DISTANCE)
plt.plot(
[wp.transform.location.x for wp in waypoint_list],
[wp.transform.location.y for wp in waypoint_list],
linestyle='', markersize=3, color='blue', marker='o')
#####################################################################
plt.subplot(212)
# Invert the y axis since we follow UE4 coordinates
plt.gca().invert_yaxis()
plt.margins(x=0.7, y=0)
# GET WAYPOINTS IN THE MAP ##########################################
# It provides a minimal graph of the topology of the current OpenDRIVE file.
# It is constituted by a list of pairs of waypoints, where the first waypoint
# is the origin and the second one is the destination.
# It can be loaded into NetworkX.
# A valid output could be: [ (w0, w1), (w0, w2), (w1, w3), (w2, w3), (w0, w4) ]
topology = carla_map.get_topology()
road_list = []
for wp_pair in topology:
current_wp = wp_pair[0]
# Check if there is a road with no previus road, this can happen
# in opendrive. Then just continue.
if current_wp is None:
continue
# First waypoint on the road that goes from wp_pair[0] to wp_pair[1].
current_road_id = current_wp.road_id
wps_in_single_road = [current_wp]
# While current_wp has the same road_id (has not arrived to next road).
while current_wp.road_id == current_road_id:
# Check for next waypoints in aprox distance.
available_next_wps = current_wp.next(WAYPOINT_DISTANCE)
# If there is next waypoint/s?
if available_next_wps:
# We must take the first ([0]) element because next(dist) can
# return multiple waypoints in intersections.
current_wp = available_next_wps[0]
wps_in_single_road.append(current_wp)
else: # If there is no more waypoints we can stop searching for more.
break
road_list.append(wps_in_single_road)
# Plot each road (on a different color by default)
for road in road_list:
plt.plot(
[wp.transform.location.x for wp in road],
[wp.transform.location.y for wp in road])
#####################################################################
plt.show()
finally:
pass
if __name__ == '__main__':
try:
main()
finally:
print('Done.')