-
Notifications
You must be signed in to change notification settings - Fork 0
/
result.log
64 lines (62 loc) · 2.54 KB
/
result.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/home/manuel/anaconda3/envs/drlnd/bin/python /home/manuel/Programming/udacity_p3_collab-compet/Tennis.py
Found path: /home/manuel/Programming/udacity_p3_collab-compet/Tennis_Linux/Tennis.x86_64
Mono path[0] = '/home/manuel/Programming/udacity_p3_collab-compet/Tennis_Linux/Tennis_Data/Managed'
Mono config path = '/home/manuel/Programming/udacity_p3_collab-compet/Tennis_Linux/Tennis_Data/MonoBleedingEdge/etc'
Preloaded 'ScreenSelector.so'
Preloaded 'libgrpc_csharp_ext.x64.so'
Unable to preload the following plugins:
ScreenSelector.so
libgrpc_csharp_ext.x86.so
Logging to /home/manuel/.config/unity3d/Unity Technologies/Unity Environment/Player.log
INFO:unityagents:
'Academy' started successfully!
Unity Academy name: Academy
Number of Brains: 1
Number of External Brains : 1
Lesson number : 0
Reset Parameters :
Unity brain name: TennisBrain
Number of Visual Observations (per agent): 0
Vector Observation space type: continuous
Vector Observation space size (per agent): 8
Number of stacked Vector Observation: 3
Vector Action space type: continuous
Vector Action space size (per agent): 2
Vector Action descriptions: ,
ActorNetwork(
(fc1): Linear(in_features=24, out_features=64, bias=True)
(fc2): Linear(in_features=64, out_features=64, bias=True)
(fc3): Linear(in_features=64, out_features=2, bias=True)
)
CriticNetwork(
(fc1): Linear(in_features=24, out_features=100, bias=True)
(fc2): Linear(in_features=102, out_features=100, bias=True)
(fc3): Linear(in_features=100, out_features=1, bias=True)
)
ActorNetwork(
(fc1): Linear(in_features=24, out_features=64, bias=True)
(fc2): Linear(in_features=64, out_features=64, bias=True)
(fc3): Linear(in_features=64, out_features=2, bias=True)
)
CriticNetwork(
(fc1): Linear(in_features=24, out_features=100, bias=True)
(fc2): Linear(in_features=102, out_features=100, bias=True)
(fc3): Linear(in_features=100, out_features=1, bias=True)
)
Episode 100: Average Score: 0.01
Episode 200: Average Score: 0.01
Episode 300: Average Score: 0.00
Episode 400: Average Score: 0.00
Episode 500: Average Score: 0.00
Episode 600: Average Score: 0.03
Episode 700: Average Score: 0.04
Episode 800: Average Score: 0.05
Episode 900: Average Score: 0.08
Episode 1000: Average Score: 0.09
Episode 1100: Average Score: 0.12
Episode 1200: Average Score: 0.12
Episode 1300: Average Score: 0.09
Episode 1400: Average Score: 0.16
Episode 1500: Average Score: 0.14
Episode 1600: Average Score: 0.32
Environment solved in 1638 episodes! Average Score: 0.52