-
Notifications
You must be signed in to change notification settings - Fork 6
/
hybrid_filtering.py
129 lines (97 loc) · 3.89 KB
/
hybrid_filtering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Implementation of collaborative filtering recommendation engine
from item_item_filtering import wrapper
from dataset_movielens import dataset
from dataset_movielens_movienames import dataset_movie_name
from math import sqrt
lis2=wrapper()
def similarity_score(person1,person2):
# Returns ratio Euclidean distance score of person1 and person2
both_viewed = {} # To get both rated items by person1 and person2
for item in dataset[person1]:
if item in dataset[person2]:
both_viewed[item] = 1
# Conditions to check they both have an common rating items
if len(both_viewed) == 0:
return 0
# Finding Euclidean distance
sum_of_eclidean_distance = []
for item in dataset[person1]:
if item in dataset[person2]:
sum_of_eclidean_distance.append(pow(dataset[person1][item] - dataset[person2][item],2))
sum_of_eclidean_distance = sum(sum_of_eclidean_distance)
return 1/(1+sqrt(sum_of_eclidean_distance))
def pearson_correlation(person1,person2):
# To get both rated items
both_rated = {}
#print ("NEW USER")
for item in dataset[person1]:
if item in dataset[person2] and item in lis2:
both_rated[item] = 1
#print str(item)
number_of_ratings = len(both_rated)
#print number_of_ratings
# Checking for number of ratings in common
if number_of_ratings == 0:
return 0
# Add up all the preferences of each user
person1_preferences_sum = sum([dataset[person1][item] for item in both_rated])
person2_preferences_sum = sum([dataset[person2][item] for item in both_rated])
# Sum up the squares of preferences of each user
person1_square_preferences_sum = sum([pow(dataset[person1][item],2) for item in both_rated])
person2_square_preferences_sum = sum([pow(dataset[person2][item],2) for item in both_rated])
# Sum up the product value of both preferences for each item
product_sum_of_both_users = sum([dataset[person1][item] * dataset[person2][item] for item in both_rated])
# Calculate the pearson score
numerator_value = product_sum_of_both_users - (person1_preferences_sum*person2_preferences_sum/number_of_ratings)
denominator_value = sqrt((person1_square_preferences_sum - pow(person1_preferences_sum,2)/number_of_ratings) * (person2_square_preferences_sum -pow(person2_preferences_sum,2)/number_of_ratings))
if denominator_value == 0:
return 0
else:
r = numerator_value/denominator_value
return r
def most_similar_users(person,number_of_users):
# returns the number_of_users (similar persons) for a given specific person.
scores = [(pearson_correlation(person,other_person),other_person) for other_person in dataset if other_person != person ]
# Sort the similar persons so that highest scores person will appear at the first
scores.sort()
scores.reverse()
return scores[0:number_of_users]
def user_reommendations(person):
# Gets recommendations for a person by using a weighted average of every other user's rankings
totals = {}
simSums = {}
rankings_list =[]
for other in dataset:
# don't compare me to myself
if other == person:
continue
sim = pearson_correlation(person,other)
#print ">>>>>>>",sim
# ignore scores of zero or lower
if sim <=0:
continue
for item in dataset[other]:
# only score movies i haven't seen yet
if item not in dataset[person] or dataset[person][item] == 0:
# Similrity * score
totals.setdefault(item,0)
totals[item] += dataset[other][item]* sim
# sum of similarities
simSums.setdefault(item,0)
simSums[item]+= sim
# Create the normalized list
rankings = [(total/simSums[item],item) for item,total in totals.items()]
rankings.sort()
rankings.reverse()
# returns the recommended items
recommendataions_list = [recommend_item for score,recommend_item in rankings]
return recommendataions_list
lis= user_reommendations('75')
i=0
lim=20;
if lim> len( lis):
lim=len(lis)
print("TOP RECOMMENDATIONS FOR YOU\n")
while i<lim:
print list(dataset_movie_name[lis[i]])[0]
i=i+1