-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
187 lines (161 loc) · 6.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
'''Train CIFAR10 with PyTorch.'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import pandas as pd
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from models import *
from utils import progress_bar
import time
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('-m', default="DPN92", type=str, help='model name')
parser.add_argument('-p', type=str, help='file path')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
parser.add_argument('-ld', default="true", type=str, help="true: load checkpoint, false: save checkpoint file")
args = parser.parse_args()
file_path = args.p
model_name = args.m
storage_print = {"/mnt/pmem0":"PMEM", "/mnt/sda":"SATA", ".":"NVME"}
model_print = {"DPN92":" DPN92 ", "VGG":" VGG ", "S_DLA":" S_DLA_"}
print("-"*13+model_print[model_name]+storage_print[file_path]+" "+"-"*14)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
#print('==> Preparing data..')
print('| Preparing data.. |')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
startTime = time.time()
trainset = torchvision.datasets.CIFAR10(
root=file_path+'/data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2)
duTime = time.time() - startTime
dataSave = pd.read_csv("/home/aisys/checkpoint.csv").drop(['Unnamed: 0'], axis = 1)
dnV = {'time':[duTime]}
dataSave2 = pd.DataFrame(data=dnV)
dataSave = pd.concat([dataSave, dataSave2], axis = 0)
startTime = time.time()
testset = torchvision.datasets.CIFAR10(
root=file_path+'/data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=2)
duTime = time.time() - startTime
print("| TestData load Time:{:.8f} |".format(duTime))
dnV = {'time':[duTime]}
dataSave2 = pd.DataFrame(data=dnV)
dataSave = pd.concat([dataSave, dataSave2], axis = 0)
dataSave.to_csv("/home/aisys/checkpoint.csv")
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
# Model
#print('==> Building model..')
model_dict={"DPN92":DPN92(), "VGG":VGG('VGG19'), "S_DLA":SimpleDLA()}
#net = VGG('VGG19')
#net = ResNet18()
# net = PreActResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = MobileNet()
#net = MobileNetV2()
#net = DPN92()
# net = ShuffleNetG2()
# net = SENet18()
# net = ShuffleNetV2(1)
# net = EfficientNetB0()
# net = RegNetX_200MF()
#net = SimpleDLA()
#model_name = "simpleDLA"
net = model_dict[model_name]
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
#if args.resume:
if args.resume:
# Load checkpoint.
# Load checkpoint.
print('| Resuming from checkpoint at *{} |'.format(storage_print[file_path]))
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('{}/checkpoint/{}_ckpt.pth'.format(file_path, model_name),map_location=torch.device('cpu'))
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
#if acc > best_acc:
if True:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir(os.path.join('checkpoint',model_name)):
os.mkdir(os.path.join('checkpoint',model_name))
#torch.save(state, './checkpoint/{}/ckpt_{}.pth'.format(model_name,epoch))
torch.save(state, '{}/checkpoint/{}_ckpt.pth'.format(file_path, model_name))
best_acc = acc
if args.ld == "false":
for epoch in range(start_epoch, start_epoch+1):
train(epoch)
test(epoch)
scheduler.step()