-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmethods.py
199 lines (179 loc) · 6.26 KB
/
methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import numpy as np
def solve_lp(A, b, c):
from cvxopt import matrix, solvers
solvers.options['show_progress'] = False
np.random.seed(None)
for _ in range(1):
A, b, c = matrix(A), matrix(b), matrix(c)
sol = solvers.lp(c, A, b)
x = sol['x']
if x is not None:
ret = A * x
if ret[0] < -0.1 and np.max(ret[1:]) < 1e-2 and np.count_nonzero(np.array(ret[1:]) <= 0) > 0.5 * len(ret):
return True
return False
def solve_perceptron(X, y, fit_intercept=True, max_iter=1000, tol=1e-3, eta0=1.):
from sklearn.linear_model import Perceptron
clf = Perceptron(fit_intercept=fit_intercept, max_iter=max_iter, tol=tol, eta0=eta0)
clf.fit(X, y)
if not fit_intercept:
pass
if clf.score(X, y) > 0.9:
return True
return False
def svd_infer(A, num_classes=1000, gt_k=None, epsilon=1e-8):
m, n = np.shape(A)
B, s, C = np.linalg.svd(A, full_matrices=False)
pred_k = np.linalg.matrix_rank(A)
k = min(gt_k, pred_k)
C = C[:k, :].astype(np.double)
# Find x: x @ C has only one positive element
# Filter possible labels using perceptron algorithm
bow = []
for i in range(n):
if i in bow:
continue
indices = [j for j in range(n) if j != i]
np.random.shuffle(indices)
if solve_perceptron(
X=np.concatenate([C[:, i:i + 1], C[:, indices[:num_classes - 1]]], 1).transpose(),
y=np.array([1 if j == 0 else -1 for j in range(num_classes)]),
fit_intercept=True,
max_iter=1000,
tol=1e-3
):
bow.append(i)
# Get the final set with linear programming
ret_bow = []
for i in bow:
if i in ret_bow:
continue
indices = [j for j in range(n) if j != i]
D = np.concatenate([C[:, i:i + 1], C[:, indices]], 1)
indices2 = np.argsort(np.linalg.norm(D[:, 1:], axis=0))
A = np.concatenate([D[:, 0:1], -D[:, 1 + indices2]], 1).transpose()
if solve_lp(
A=A,
b=np.array([-epsilon] + [0] * len(indices2)),
c=np.array(C[:, i:i + 1])
):
ret_bow.append(i)
return ret_bow
# Extended GradientInversion, w_grad: m * n.
def gi_infer(w_grad):
ret = (torch.min(w_grad, dim=0)[0] < 0).nonzero(as_tuple=False).squeeze().numpy()
ret = [ret] if ret.shape == () else ret
return ret
# Extended iDLG
def idlg_infer(w_grad):
ret = (torch.sum(w_grad, dim=0) < 0).nonzero(as_tuple=False).squeeze().numpy()
ret = [ret] if ret.shape == () else ret
return ret
# Recover embeddings
def get_emb(grad_w, grad_b, exp_thre=10):
# Split scientific count notation
sc_grad_b = '%e' % grad_b
sc_grad_w = ['%e' % w for w in grad_w]
real_b, exp_b = float(sc_grad_b.split('e')[0]), int(sc_grad_b.split('e')[1])
real_w, exp_w = np.array([float(sc_w.split('e')[0]) for sc_w in sc_grad_w]), \
np.array([int(sc_w.split('e')[1]) for sc_w in sc_grad_w])
# Deal with 0 case
if real_b == 0.:
real_b = 1
exp_b = -64
# Deal with exponent value
exp = exp_w - exp_b
exp = np.where(exp > exp_thre, exp_thre, exp)
exp = np.where(exp < -1 * exp_thre, -1 * exp_thre, exp)
def get_exp(x):
return 10 ** x if x >= 0 else 1. / 10 ** (-x)
exp = np.array(list(map(get_exp, exp)))
# Calculate recovered average embeddings for batch_i (samples of class i)
res = (1. / real_b) * real_w * exp
res = torch.from_numpy(res).to(torch.float32)
return res
# Recover Labels
def iLRG(probs, grad_b, n_classes, n_images):
# Solve linear equations to recover labels
coefs, values = [], []
# Add the first equation: k1+k2+...+kc=K
coefs.append([1 for _ in range(n_classes)])
values.append(n_images)
# Add the following equations
for i in range(n_classes):
coef = []
for j in range(n_classes):
if j != i:
coef.append(probs[j][i].item())
else:
coef.append(probs[j][i].item() - 1)
coefs.append(coef)
values.append(n_images * grad_b[i])
# Convert into numpy ndarray
coefs = np.array(coefs)
values = np.array(values)
# Solve with Moore-Penrose pseudoinverse
res_float = np.linalg.pinv(coefs).dot(values)
# Filter negative values
res = np.where(res_float > 0, res_float, 0)
# Round values
res = np.round(res).astype(int)
res = np.where(res <= n_images, res, 0)
err = res - res_float
num_mod = np.sum(res) - n_images
if num_mod > 0:
inds = np.argsort(-err)
mod_inds = inds[:num_mod]
mod_res = res.copy()
mod_res[mod_inds] -= 1
elif num_mod < 0:
inds = np.argsort(err)
mod_inds = inds[:num_mod]
mod_res = res.copy()
mod_res[mod_inds] += 1
else:
mod_res = res
return res, mod_res
# Have Known about which labels exist
def sim_iLRG(probs, grad_b, exist_labels, n_images):
# Solve linear equations to recover labels
coefs, values = [], []
# Add the first equation: k1+k2+...+kc=K
coefs.append([1 for _ in range(len(exist_labels))])
values.append(n_images)
# Add the following equations
for i in exist_labels:
coef = []
for j in exist_labels:
if j != i:
coef.append(probs[j][i].item())
else:
coef.append(probs[j][i].item() - 1)
coefs.append(coef)
values.append(n_images * grad_b[i])
# Convert into numpy ndarray
coefs = np.array(coefs)
values = np.array(values)
# Solve with Moore-Penrose pseudoinverse
res_float = np.linalg.pinv(coefs).dot(values)
# Filter negative values
res = np.where(res_float > 0, res_float, 0)
# Round values
res = np.round(res).astype(int)
res = np.where(res <= n_images, res, 0)
err = res - res_float
num_mod = np.sum(res) - n_images
if num_mod > 0:
inds = np.argsort(-err)
mod_inds = inds[:num_mod]
mod_res = res.copy()
mod_res[mod_inds] -= 1
elif num_mod < 0:
inds = np.argsort(err)
mod_inds = inds[:num_mod]
mod_res = res.copy()
mod_res[mod_inds] += 1
else:
mod_res = res
return res, mod_res