-
Notifications
You must be signed in to change notification settings - Fork 3
/
main.py
642 lines (577 loc) · 34.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
import time
import consts
import rec_imgs
import torchvision
from utils import *
import torch.nn as nn
from defense import params
from options import options
from methods import get_emb
from models import get_model
from datasets import get_dataset
from train import Classification, train, iter_train
if __name__ == '__main__':
args = options().parse_args()
args.log_dir = os.path.join('logs', args.exp_name)
args.image_dir = os.path.join('images', args.exp_name)
# Defend params
noise_std = args.noise_std
clip_bound = args.clip_bound
sparse_ratio = args.sparse_ratio
prune_ratio = args.prune_ratio
# Set random seeds
set_random_seed(args.seed)
# Get log file handle
log_file = get_log_file(args.log_dir)
# Log current time
current_time = time.strftime('%Y-%m-%d-%H:%M:%S', time.localtime(time.time()))
print_util('running experiments at {}'.format(current_time), log_file=log_file)
print_util(get_params_string(vars(args)), log_file=log_file)
# Get dataset
dataset_params = get_dataset(dataset=args.dataset,
data_path=args.data_path,
model=args.model,
aug=False, )
img_shape, num_classes, channel, hidden, dataset = dataset_params
train_data, valid_data = dataset
target_data = train_data if args.split == 'train' else valid_data
args.num_classes = num_classes
device = get_device(use_cuda=False if args.cpu else True)
setup = dict(device=device, dtype=torch.float)
# Get model
model = get_model(model_name=args.model,
net_params=(num_classes, channel, hidden),
device=device,
n_hidden=args.n_hidden,
n_dim=args.n_dim,
batchnorm=args.batchnorm,
dropout=args.dropout,
silu=args.silu,
leaky_relu=args.leaky_relu)
model = model.to(device)
# Load a trained model
if args.trained_model:
file = f'{args.model}_{args.dataset}_Iter{args.iters}.pth' if args.iter_train else f'{args.model}_{args.dataset}_Epoch{args.epochs}.pth'
try:
model.load_state_dict(torch.load(os.path.join(args.model_path, file), map_location=device))
print_util(f'Model loaded from file {file}.', log_file=log_file)
except FileNotFoundError:
print_util('Training the model ...', log_file=log_file)
# Training configs
defs = Config({'iter_train': args.iter_train,
'epochs': args.epochs,
'iterations': args.iters,
'batch_size': args.batch_size,
'optimizer': args.optimizer,
'lr': args.lr,
'scheduler': args.scheduler,
'weight_decay': args.weight_decay,
'warmup': args.warmup,
'epoch_interval': args.epoch_interval,
'iter_interval': args.iter_interval,
'dryrun': args.dryrun,
'model': args.model,
'dataset': args.dataset,
'mid_save': args.mid_save,
'save_dir': args.model_path})
# Get dataloader
train_loader = get_dataloader(train_data, batch_size=defs.batch_size, shuffle=True)
valid_loader = get_dataloader(valid_data, batch_size=defs.batch_size, shuffle=False)
if args.iter_train:
stats = iter_train(model, Classification(), train_loader, valid_loader, defs, setup=setup)
else:
stats = train(model, Classification(), train_loader, valid_loader, defs, setup=setup)
if args.rec_img:
dataset_lower = 'mnist' if args.dataset.lower() == 'mnist_gray' else args.dataset.lower()
dm = torch.as_tensor(getattr(consts, f'{dataset_lower}_mean'))[:, None, None].to(device)
ds = torch.as_tensor(getattr(consts, f'{dataset_lower}_std'))[:, None, None].to(device)
if args.optim == 'ig':
rec_config = dict(signed=args.signed,
boxed=True,
cost_fn=args.cost_fn,
indices=args.indices,
weights=args.weights,
lr=args.rec_lr if args.rec_lr is not None else 0.1,
optim='adam',
restarts=args.restarts,
max_iterations=args.max_iterations,
total_variation=args.tv,
l2_norm=args.l2,
init=args.init,
filter='median' if args.dataset == 'ImageNet' else 'none',
lr_decay=True,
scoring_choice=args.scoring_choice)
elif args.optim == 'dlg':
rec_config = dict(signed=False,
boxed=False,
cost_fn='l2',
indices='def',
weights='equal',
lr=args.rec_lr if args.rec_lr is not None else 1.0,
optim='LBFGS',
restarts=args.restarts,
max_iterations=args.max_iterations, # 500
total_variation=args.tv,
l2_norm=args.l2,
init=args.init,
filter='none',
lr_decay=False,
scoring_choice=args.scoring_choice)
model.eval()
# Loss Function
criterion = nn.CrossEntropyLoss()
# Multiple experiments
iLRG_leaccs, iLRG_lnaccs, iLRG_irecs = AverageMeter(), AverageMeter(), AverageMeter()
iDLG_leaccs, GI_leaccs, SVD_leaccs = AverageMeter(), AverageMeter(), AverageMeter()
mtp_approx1_mses, mtp_approx2_mses, mtp_approx3_mses, mtp_approx4_mses = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
mtp_scale_mses, mtp_approx_out_mses, mtp_approx_prob_mses = AverageMeter(), AverageMeter(), AverageMeter()
mtp_emb_mses, mtp_out_mses, mtp_prob_mses = AverageMeter(), AverageMeter(), AverageMeter()
mtp_approx1_mres, mtp_approx2_mres, mtp_approx3_mres, mtp_approx4_mres = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
mtp_scale_mres, mtp_approx_out_mres, mtp_approx_prob_mres = AverageMeter(), AverageMeter(), AverageMeter()
mtp_emb_mres, mtp_out_mres, mtp_prob_mres = AverageMeter(), AverageMeter(), AverageMeter()
mtp_emb_sims, mtp_out_sims, mtp_prob_sims = AverageMeter(), AverageMeter(), AverageMeter()
mtp_soteria_mses, mtp_soteria_sims = AverageMeter(), AverageMeter()
if 'custom' in args.distribution:
mtp_0_cnt, mtp_18_cnt, mtp_92_cnt = AverageMeter(), AverageMeter(), AverageMeter()
target_id = args.start_id
max_thresh = 10
for exp_id in range(args.num_tries):
print_util('Start Experiment {}'.format(exp_id + 1), log_file=log_file)
# Load batch data
target_id = target_id % len(target_data)
print_util('start_id: ' + str(target_id), log_file=log_file)
gt_data, gt_label, target_id = get_data(dataset=target_data,
num_images=args.num_images,
num_classes=args.num_classes,
data_distribution=args.distribution,
start_id=target_id,
num_uniform_cls=args.num_uniform_cls,
num_target_cls=args.num_target_cls,
device=device)
print('Finish getting data!')
# Forward Process
if args.dataset == 'ImageNet' and args.num_images > args.max_size:
assert args.num_images % args.max_size == 0, 'Number of images should be an integral multiple of max size'
split_data = torch.split(gt_data, args.max_size, 0)
split_label = torch.split(gt_label, args.max_size, 0)
num_batch = args.num_images // args.max_size
grads, embeddings, outs = [], [], []
for i in range(num_batch):
split_outs, split_embeddings = model(split_data[i])
split_grads = get_grads(outs=split_outs, labels=split_label[i], model=model, loss_fn=criterion,
rec=args.rec_img)
grads.append(split_grads)
outs.append(split_outs)
embeddings.append(split_embeddings)
print('Finish splitting {}!'.format(i))
grads = np.stack(np.array(grads))
grads = np.mean(grads, axis=0)
embeddings = np.stack(np.array(embeddings))
outs = np.stack(np.array(outs))
# Collect several class-wise data for error analysis
if args.analysis:
indexes, cls_embeddings, cls_outs, cls_probs, cls_wgrad, cls_bgrad = collect_cls_variables(
embeddings=embeddings,
outs=outs,
gt_label=gt_label,
num_classes=args.num_classes,
model=model,
loss_fn=criterion)
else:
outs, embeddings = model(gt_data)
# Collect several class-wise data for error analysis
if args.analysis:
indexes, cls_embeddings, cls_outs, cls_probs, cls_wgrad, cls_bgrad = collect_cls_variables(
embeddings=embeddings,
outs=outs,
gt_label=gt_label,
num_classes=args.num_classes,
model=model,
loss_fn=criterion)
# Get Batch-averaged gradients
grads = get_grads(outs=outs, labels=gt_label, model=model, loss_fn=criterion, rec=args.rec_img)
print('Finish getting grads!')
print('Finish forward process!')
probs = torch.softmax(outs, dim=-1)
preds = torch.max(probs, 1)[1].cpu()
correct = (preds == gt_label.cpu()).sum().item()
print_util('%d/%d, Acc for this batch: %.3f' % (correct, args.num_images, correct / args.num_images),
log_file=log_file)
w_grad, b_grad = grads[-2], grads[-1]
# Lossy transformation to gradients to defend leakage
if args.defense:
w_grad, b_grad = degrade_grads(grads=[w_grad, b_grad],
defense_method=args.defense_method,
param_value=eval(params[args.defense_method]),
model_name=args.model,
images=gt_data,
model=model)
cls_rec_probs = []
if args.analysis:
approx1_mses, approx2_mses, approx3_mses, approx4_mses = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
scale_mses, approx_out_mses, approx_prob_mses = AverageMeter(), AverageMeter(), AverageMeter()
emb_mses, out_mses, prob_mses = AverageMeter(), AverageMeter(), AverageMeter()
approx1_mres, approx2_mres, approx3_mres, approx4_mres = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
scale_mres, approx_out_mres, approx_prob_mres = AverageMeter(), AverageMeter(), AverageMeter()
emb_mres, out_mres, prob_mres = AverageMeter(), AverageMeter(), AverageMeter()
emb_sims, out_sims, prob_sims = AverageMeter(), AverageMeter(), AverageMeter()
soteria_mses, soteria_sims = AverageMeter(), AverageMeter()
for i in range(num_classes):
# Recover class-specific embeddings and probabilities
cls_rec_emb = get_emb(w_grad[i], b_grad[i])
# if (not args.silu) and (not args.leaky_relu):
# cls_rec_emb = torch.where(cls_rec_emb < 0., torch.full_like(cls_rec_emb, 0), cls_rec_emb)
# cls_rec_emb = torch.where(w_grad[i] < 0., torch.full_like(w_grad[i], 0), w_grad[i])
cls_rec_prob = post_process_emb(embedding=cls_rec_emb,
model=model,
device=device,
alpha=args.alpha)
cls_rec_probs.append(cls_rec_prob)
# Calculate MSEs.
if args.analysis:
if len(indexes[i]) > 0:
avg_opt1 = model.fc(cls_embeddings[i])
avg_sfm_opt1 = torch.softmax(avg_opt1, dim=0)
avg_sfm_opt2 = torch.softmax(cls_outs[i], dim=0)
avg_rec_opt = model.fc(cls_rec_emb.to(device))
# print(cls_rec_emb.max(), cls_embeddings[i].max(), w_grad[i].max())
emb_mse = torch.mean((cls_rec_emb.cpu() - cls_embeddings[i].cpu()) ** 2)
emb_mre = torch.abs((cls_rec_emb.cpu() - cls_embeddings[i].cpu()) / cls_embeddings[i].cpu())
emb_mre = torch.where(torch.isinf(emb_mre), torch.full_like(emb_mre, 0), emb_mre)
emb_mre = torch.mean(torch.where(torch.isnan(emb_mre), torch.full_like(emb_mre, 0), emb_mre))
emb_sim = torch.cosine_similarity(cls_rec_emb.cpu(), cls_embeddings[i].cpu(), dim=-1)
out_mse = torch.mean((avg_rec_opt.cpu() - cls_outs[i].cpu()) ** 2)
out_mre = torch.abs((avg_rec_opt.cpu() - cls_outs[i].cpu()) / cls_outs[i].cpu())
out_mre = torch.where(torch.isinf(out_mre), torch.full_like(out_mre, 0), out_mre)
out_mre = torch.mean(torch.where(torch.isnan(out_mre), torch.full_like(out_mre, 0), out_mre))
out_sim = torch.cosine_similarity(avg_rec_opt.cpu(), cls_outs[i].cpu(), dim=-1)
prob_mse = torch.mean((cls_rec_prob.cpu() - cls_probs[i].cpu()) ** 2)
prob_mre = torch.abs((cls_rec_prob.cpu() - cls_probs[i].cpu()) / cls_probs[i].cpu())
prob_mre = torch.where(torch.isinf(prob_mre), torch.full_like(prob_mre, 0), prob_mre)
prob_mre = torch.mean(torch.where(torch.isnan(prob_mre), torch.full_like(prob_mre, 0), prob_mre))
prob_sim = torch.cosine_similarity(cls_rec_prob.cpu(), cls_probs[i].cpu(), dim=-1)
soteria_mse = torch.mean((w_grad[i].cpu() - cls_embeddings[i].cpu()) ** 2)
soteria_sim = torch.cosine_similarity(w_grad[i].cpu(), cls_embeddings[i].cpu(), dim=-1)
approx1_mse = torch.mean((cls_wgrad[i].cpu() - cls_bgrad[i].cpu() * cls_embeddings[i].cpu()) ** 2)
approx1_mre = torch.abs(
(cls_wgrad[i].cpu() - cls_bgrad[i].cpu() * cls_embeddings[i].cpu()) / cls_wgrad[i].cpu())
approx1_mre = torch.where(torch.isinf(approx1_mre), torch.full_like(approx1_mre, 0), approx1_mre)
approx1_mre = torch.mean(
torch.where(torch.isnan(approx1_mre), torch.full_like(approx1_mre, 0), approx1_mre))
approx2_mse = (w_grad[i].cpu() - len(indexes[i]) / args.num_images * cls_wgrad[i].cpu()) ** 2
approx2_mse = torch.where(torch.isinf(approx2_mse), torch.full_like(approx2_mse, 0), approx2_mse)
approx2_mse = torch.mean(
torch.where(torch.isnan(approx2_mse), torch.full_like(approx2_mse, 0), approx2_mse))
approx2_mre = torch.abs(
(w_grad[i].cpu() - len(indexes[i]) / args.num_images * cls_wgrad[i].cpu()) / w_grad[i].cpu())
approx2_mre = torch.where(torch.isinf(approx2_mre), torch.full_like(approx2_mre, 0), approx2_mre)
approx2_mre = torch.mean(
torch.where(torch.isnan(approx2_mre), torch.full_like(approx2_mre, 0), approx2_mre))
approx3_mse = (b_grad[i].cpu() - len(indexes[i]) / args.num_images * cls_bgrad[i].cpu()) ** 2
# if i in [0, 18, 92]:
# print(b_grad[i], cls_bgrad[i], len(indexes[i]) / args.num_images * cls_bgrad[i])
approx3_mse = torch.where(torch.isinf(approx3_mse), torch.full_like(approx3_mse, 0), approx3_mse)
approx3_mse = torch.mean(
torch.where(torch.isnan(approx3_mse), torch.full_like(approx3_mse, 0), approx3_mse))
approx3_mre = torch.abs(
(b_grad[i].cpu() - len(indexes[i]) / args.num_images * cls_bgrad[i].cpu()) / b_grad[i].cpu())
approx3_mre = torch.where(torch.isinf(approx3_mre), torch.full_like(approx3_mre, 0), approx3_mre)
approx3_mre = torch.mean(
torch.where(torch.isnan(approx3_mre), torch.full_like(approx3_mre, 0), approx3_mre))
approx4_mse = torch.mean((avg_sfm_opt1.cpu() - cls_probs[i].cpu()) ** 2)
approx4_mre = torch.abs((avg_sfm_opt1.cpu() - cls_probs[i].cpu()) / cls_probs[i].cpu())
approx4_mre = torch.where(torch.isinf(approx4_mre), torch.full_like(approx4_mre, 0), approx4_mre)
approx4_mre = torch.mean(
torch.where(torch.isnan(approx4_mre), torch.full_like(approx4_mre, 0), approx4_mre))
scale_mse = (w_grad[i].cpu() / b_grad[i].cpu() - cls_wgrad[i].cpu() / cls_bgrad[i].cpu()) ** 2
scale_mse = torch.where(torch.isinf(scale_mse), torch.full_like(scale_mse, 0), scale_mse)
scale_mse = torch.mean(
torch.where(torch.isnan(scale_mse), torch.full_like(scale_mse, 0), scale_mse))
scale_mre = torch.abs(
(w_grad[i].cpu() / b_grad[i].cpu() - cls_wgrad[i].cpu() / cls_bgrad[i].cpu()) / (
cls_wgrad[i] / cls_bgrad[i].cpu()))
scale_mre = torch.where(torch.isinf(scale_mre), torch.full_like(scale_mre, 0), scale_mre)
scale_mre = torch.mean(
torch.where(torch.isnan(scale_mre), torch.full_like(scale_mre, 0), scale_mre))
approx_out_mse = torch.mean((avg_opt1.cpu() - cls_outs[i].cpu()) ** 2)
approx_out_mre = torch.abs((avg_opt1.cpu() - cls_outs[i].cpu()) / cls_outs[i].cpu())
approx_out_mre = torch.where(torch.isinf(approx_out_mre), torch.full_like(approx_out_mre, 0),
approx_out_mre)
approx_out_mre = torch.mean(
torch.where(torch.isnan(approx_out_mre), torch.full_like(approx_out_mre, 0), approx_out_mre))
approx_prob_mse = torch.mean((avg_sfm_opt2.cpu() - cls_probs[i].cpu()) ** 2)
approx_prob_mre = torch.abs((avg_sfm_opt2.cpu() - cls_probs[i].cpu()) / cls_probs[i].cpu())
approx_prob_mre = torch.where(torch.isinf(approx_prob_mre), torch.full_like(approx_prob_mre, 0),
approx_prob_mre)
approx_prob_mre = torch.mean(
torch.where(torch.isnan(approx_prob_mre), torch.full_like(approx_prob_mre, 0), approx_prob_mre))
approx1_mses.update(approx1_mse.item())
approx2_mses.update(approx2_mse.item())
approx3_mses.update(approx3_mse.item())
approx4_mses.update(approx4_mse.item())
scale_mses.update(scale_mse.item())
approx_out_mses.update(approx_out_mse.item())
approx_prob_mses.update(approx_prob_mse.item())
emb_mses.update(emb_mse.item() if emb_mse.item() < max_thresh else max_thresh)
out_mses.update(out_mse.item())
prob_mses.update(prob_mse.item())
emb_sims.update(emb_sim.item())
out_sims.update(out_sim.item())
prob_sims.update(prob_sim.item())
approx1_mres.update(approx1_mre.item())
approx2_mres.update(approx2_mre.item())
approx3_mres.update(approx3_mre.item())
approx4_mres.update(approx4_mre.item())
scale_mres.update(scale_mre.item())
approx_out_mres.update(approx_out_mre.item())
approx_prob_mres.update(approx_prob_mre.item())
emb_mres.update(emb_mre.item())
out_mres.update(out_mre.item())
prob_mres.update(prob_mre.item())
soteria_sims.update(soteria_sim.item())
soteria_mses.update(soteria_mse.item())
print_util(
'Class %d | Approx1 MSE: %e | Approx2 MSE: %e | Approx3 MSE: %e | Approx4 MSE: %e'
% (i, approx1_mse.item(), approx2_mse.item(), approx3_mse.item(), approx4_mse.item()),
log_file=log_file)
print_util(
'Class %d | Scale MSE: %e | Approx Out MSE: %e | Approx Probabilities MSE: %e'
% (i, scale_mse.item(), approx_out_mse.item(), approx_prob_mse.item()),
log_file=log_file)
print_util(
'Class %d | Embedding MSE: %e | Out MSE: %e | Probabilities MSE: %e'
% (i, emb_mse.item(), out_mse.item(), prob_mse.item()),
log_file=log_file)
print_util(
'Class %d | Embedding Cosine Similarity: %.3f | Out Cosine Similarity: %.3f | Probabilities Cosine Similarity: %.3f'
% (i, emb_sim.item(), out_sim.item(), prob_sim.item()),
log_file=log_file)
print_util(
'Class %d | Approx1 MRE: %.3f | Approx2 MRE: %.3f | Approx3 MRE: %.3f | Approx4 MRE: %.3f'
% (i, approx1_mre.item(), approx2_mre.item(), approx3_mre.item(), approx4_mre.item()),
log_file=log_file)
print_util(
'Class %d | Scale MRE: %.3f | Approx Out MRE: %.3f | Approx Probabilities MRE: %.3f'
% (i, scale_mre.item(), approx_out_mre.item(), approx_prob_mre.item()),
log_file=log_file)
print_util(
'Class %d | Embedding MRE: %.3f | Out MRE: %.3f | Probabilities MRE: %.3f '
% (i, emb_mre.item(), out_mre.item(), prob_mre.item()),
log_file=log_file)
print_util('Class %d | Soteria Embedding MSE: %e | Soteria Embedding Cosine Similarity: %.3f '
% (i, soteria_mse.item(), soteria_sim.item()),
log_file=log_file)
else:
prob_mse = torch.mean(cls_rec_prob ** 2)
print_util(
'Class %d | Probabilities MSE: %e' % (i, prob_mse.item()), log_file=log_file)
# prob_mses.update(prob_mse.item())
print_util('***************************************************************', log_file=log_file)
if args.analysis:
approx1_mses.filter(args.ratio)
approx2_mses.filter(args.ratio)
approx3_mses.filter(args.ratio)
approx4_mses.filter(args.ratio)
mtp_approx1_mses.update(approx1_mses.avg)
mtp_approx2_mses.update(approx2_mses.avg)
mtp_approx3_mses.update(approx3_mses.avg)
mtp_approx4_mses.update(approx4_mses.avg)
scale_mses.filter(args.ratio)
approx_out_mses.filter(args.ratio)
approx_prob_mses.filter(args.ratio)
mtp_scale_mses.update(scale_mses.avg)
mtp_approx_out_mses.update(approx_out_mses.avg)
mtp_approx_prob_mses.update(approx_prob_mses.avg)
emb_mses.filter(args.ratio)
out_mses.filter(args.ratio)
prob_mses.filter(args.ratio)
mtp_emb_mses.update(emb_mses.avg)
mtp_out_mses.update(out_mses.avg)
mtp_prob_mses.update(prob_mses.avg)
emb_sims.filter(args.ratio)
out_sims.filter(args.ratio)
prob_sims.filter(args.ratio)
mtp_emb_sims.update(emb_sims.avg)
mtp_out_sims.update(out_sims.avg)
mtp_prob_sims.update(prob_sims.avg)
soteria_sims.filter(args.ratio)
soteria_mses.filter(args.ratio)
mtp_soteria_sims.update(soteria_sims.avg)
mtp_soteria_mses.update(soteria_mses.avg)
approx1_mres.filter(args.ratio)
approx2_mres.filter(args.ratio)
approx3_mres.filter(args.ratio)
approx4_mres.filter(args.ratio)
mtp_approx1_mres.update(approx1_mres.avg)
mtp_approx2_mres.update(approx2_mres.avg)
mtp_approx3_mres.update(approx3_mres.avg)
mtp_approx4_mres.update(approx4_mres.avg)
scale_mres.filter(args.ratio)
approx_out_mres.filter(args.ratio)
approx_prob_mres.filter(args.ratio)
mtp_scale_mres.update(scale_mres.avg)
mtp_approx_out_mres.update(approx_out_mres.avg)
mtp_approx_prob_mres.update(approx_prob_mres.avg)
emb_mres.filter(args.ratio)
out_mres.filter(args.ratio)
prob_mres.filter(args.ratio)
mtp_emb_mres.update(emb_mres.avg)
mtp_out_mres.update(out_mres.avg)
mtp_prob_mres.update(prob_mres.avg)
print_util(
'Avg Approx1 MSE: %e | Avg Approx2 MSE: %e | Avg Approx3 MSE: %e | Avg Approx4 MSE: %e'
% (approx1_mses.avg, approx2_mses.avg, approx3_mses.avg, approx4_mses.avg),
log_file=log_file)
print_util(
'Avg Scale MSE: %e | Avg Approx Out MSE: %e | Avg Approx Probabilities MSE: %e'
% (scale_mses.avg, approx_out_mses.avg, approx_prob_mses.avg),
log_file=log_file)
print_util(
'Avg Embedding MSE: %e | Avg Out MSE: %e | Avg Probabilities MSE: %e'
% (emb_mses.avg, out_mses.avg, prob_mses.avg),
log_file=log_file)
print_util(
'Avg Embedding Cosine Similarity: %.3f | Avg Out Cosine Similarity: %.3f | Avg Probabilities Cosine Similarity: %.3f '
% (emb_sims.avg, out_sims.avg, prob_sims.avg),
log_file=log_file)
print_util(
'Avg Approx1 MRE: %.3f | Avg Approx2 MRE: %.3f | Avg Approx3 MRE: %.3f | Avg Approx4 MRE: %.3f'
% (approx1_mres.avg, approx2_mres.avg, approx3_mres.avg, approx4_mres.avg),
log_file=log_file)
print_util(
'Avg Scale MRE: %.3f | Avg Approx Out MRE: %.3f | Avg Approx Probabilities MRE: %.3f'
% (scale_mres.avg, approx_out_mres.avg, approx_prob_mres.avg),
log_file=log_file)
print_util(
'Avg Embedding MRE: %.3f | Avg Out MRE: %.3f | Avg Probabilities MRE: %.3f '
% (emb_mres.avg, out_mres.avg, prob_mres.avg),
log_file=log_file)
print_util(
'Avg Soteria Embedding MSE: %e | Avg Soteria Embedding Cosine Similarity: %.3f'
% (soteria_mses.avg, soteria_sims.avg),
log_file=log_file)
# iLRG label recovery
# Random assign embeddings
# cls_rec_probs = [torch.softmax(torch.randn(args.num_classes), dim=-1) for _ in
# range(args.num_classes)]
# 1/n for probs
if args.estimate:
cls_rec_probs = [torch.ones(args.num_classes) / args.num_classes for _ in
range(args.num_classes)]
res, metrics = get_irlg_res(cls_rec_probs=cls_rec_probs,
b_grad=b_grad,
gt_label=gt_label,
num_classes=args.num_classes,
num_images=args.num_images,
log_file=log_file,
simplified=args.simplified)
_, _, rec_instances, existences, mod_rec_instances = res
if 'custom' in args.distribution:
mtp_0_cnt.update(rec_instances[0])
mtp_18_cnt.update(rec_instances[18])
mtp_92_cnt.update(rec_instances[92])
leacc, lnacc, irec = metrics
iLRG_leaccs.update(leacc)
iLRG_lnaccs.update(lnacc)
iLRG_irecs.update(irec)
if args.compare:
# iDLG label recovery
idlg_acc = get_other_res(w_grad=w_grad,
num_classes=args.num_classes,
existences=existences,
log_file=log_file,
attack_method='idlg')
iDLG_leaccs.update(idlg_acc)
# GradientInversion label recovery
gi_acc = get_other_res(w_grad=w_grad,
num_classes=args.num_classes,
existences=existences,
log_file=log_file,
attack_method='gi')
GI_leaccs.update(gi_acc)
# SVD label recovery
svd_acc = get_other_res(w_grad=w_grad,
num_classes=args.num_classes,
existences=existences,
log_file=log_file,
attack_method='svd',
num_images=args.num_images)
SVD_leaccs.update(svd_acc)
# Reconstruct images
if args.rec_img:
model.eval()
grads = [g.to(**setup) for g in grads]
rec_machine = rec_imgs.GradientReconstructor(model=model,
config=rec_config,
mean_std=(dm, ds),
num_images=args.num_images,
loss_thresh=args.loss_thresh,
rec_exp_dir=args.image_dir)
labels = None
if args.fix_labels:
if args.gt_labels:
labels = gt_label
else:
labels = []
for idx in range(args.num_classes):
if mod_rec_instances[idx] > 0:
labels.extend([idx] * mod_rec_instances[idx])
labels = torch.from_numpy(np.array(labels)).long().to(device)
print(gt_label, labels)
print_util(' ', log_file=log_file)
print_util('Start reconstructing images', log_file=log_file)
if not os.path.exists(args.image_dir):
os.makedirs(args.image_dir)
ground_truth_den = torch.clamp(gt_data * ds + dm, 0, 1)
for j in range(args.num_images):
gt_filename = f"gt_{j}.png"
torchvision.utils.save_image(ground_truth_den[j:j + 1, ...],
os.path.join(args.image_dir, gt_filename))
output, stats = rec_machine.reconstruct(grads, labels,
img_shape=(channel, *img_shape),
dryrun=args.dryrun,
aux_data=valid_data)
print_util('End reconstructing images', log_file=log_file)
output_den = torch.clamp(output * ds + dm, 0, 1)
# Save the resulting image
if args.save_image and not args.dryrun:
for j in range(args.num_images):
filename = f'rec_{j}.png'
torchvision.utils.save_image(output_den[j:j + 1, ...],
os.path.join(args.image_dir, filename))
# Mean Results of multiple experiments
print_util('---------------------------------------------------------------', log_file=log_file)
opt_string = 'Mean Ours LeAcc: %.3f | Mean Ours LnAcc: %.3f | Mean Ours IRec: %.3f' % (
iLRG_leaccs.avg, iLRG_lnaccs.avg, iLRG_irecs.avg)
if args.compare:
opt_string = 'Mean iDLG LeAcc: %.3f | Mean GI LeAcc: %.3f | Mean SVD LeAcc: %.3f ' % (
iDLG_leaccs.avg, GI_leaccs.avg, SVD_leaccs.avg) + opt_string
print_util(opt_string, log_file=log_file)
if args.analysis:
print_util(
'Mean Avg Approx1 MSE: %e | Mean Avg Approx2 MSE: %e | Mean Avg Approx3 MSE: %e | Mean Avg Approx4 MSE: %e' % (
mtp_approx1_mses.avg, mtp_approx2_mses.avg, mtp_approx3_mses.avg, mtp_approx4_mses.avg),
log_file=log_file)
print_util(
'Mean Avg Approx1 MRE: %.3f | Mean Avg Approx2 MRE: %.3f | Mean Avg Approx3 MRE: %.3f | Mean Avg Approx4 MRE: %.3f' % (
mtp_approx1_mres.avg, mtp_approx2_mres.avg, mtp_approx3_mres.avg, mtp_approx4_mres.avg),
log_file=log_file)
print_util('Mean Avg Scale MSE: %e | Mean Avg Approx Out MSE: %e | Mean Avg Approx Probabilities MSE: %e' % (
mtp_scale_mses.avg, mtp_approx_out_mses.avg, mtp_approx_prob_mses.avg), log_file=log_file)
print_util(
'Mean Avg Scale MRE: %.3f | Mean Avg Approx Out MRE: %.3f | Mean Avg Approx Probabilities MRE: %.3f' % (
mtp_scale_mres.avg, mtp_approx_out_mres.avg, mtp_approx_prob_mres.avg), log_file=log_file)
print_util(
'Mean Avg Embedding MSE: %e | Mean Avg Out MSE: %e | Mean Avg Probabilities MSE: %e' % (
mtp_emb_mses.avg, mtp_out_mses.avg, mtp_prob_mses.avg), log_file=log_file)
print_util('Mean Avg Embedding MRE: %.3f | Mean Avg Out MRE: %.3f | Mean Avg Probabilities MRE: %.3f' % (
mtp_emb_mres.avg, mtp_out_mres.avg, mtp_prob_mres.avg), log_file=log_file)
print_util(
'Mean Avg Embedding Cosine Similarity: %.3f | Mean Avg Out Cosine Similarity: %.3f | Mean Avg Probability Cosine Similarity: %.3f' % (
mtp_emb_sims.avg, mtp_out_sims.avg, mtp_prob_sims.avg), log_file=log_file)
print_util(
'Mean Avg Soteria Embedding MSE: %e | Mean Avg Soteria Embedding Cosine Similarity: %.3f ' % (
mtp_soteria_mses.avg, mtp_soteria_sims.avg), log_file=log_file)
if 'custom' in args.distribution:
print_util('Mean Rec Instances: Class 0-%d, Class 18-%d, Class 92-%d' % (
mtp_0_cnt.avg, mtp_18_cnt.avg, mtp_92_cnt.avg), log_file=log_file)