-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
48 lines (38 loc) · 3.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import pandas as pd
def print_ar_stats(dataset):
print("Harps total:", len(os.listdir(dataset.path_harp)))
print("Harps removed for noaa:", dataset.cnt_harp_noaa)
print("Harps without flares:", dataset.cnt_harp_wo_flare)
print("Harps used:", len(os.listdir(dataset.path_harp)) - dataset.cnt_harp_noaa - dataset.cnt_harp_wo_flare)
print("Harps length average:", dataset.harp_lengths.mean())
print("Harps length min:", dataset.harp_lengths.min())
print("Harps length max:", dataset.harp_lengths.max())
def print_flare_stats(dataset):
print("Flares total:", len(dataset.valid_events) + dataset.cnt_flare_m_sharp)
print("Flares with missing:", dataset.cnt_flare_m_sharp)
print("Flares used train:", len(dataset.valid_events_train))
print("Flares used test:", len(dataset.valid_events_test))
print("Flares used train-B:", len([idx for idx, element in enumerate(dataset.valid_events_train) if element[1][:1] == 'B']))
print("Flares used train-C:", len([idx for idx, element in enumerate(dataset.valid_events_train) if element[1][:1] == 'C']))
print("Flares used train-M:", len([idx for idx, element in enumerate(dataset.valid_events_train) if element[1][:1] == 'M']))
print("Flares used train-X:", len([idx for idx, element in enumerate(dataset.valid_events_train) if element[1][:1] == 'X']))
print("Flares used test-B:", len([idx for idx, element in enumerate(dataset.valid_events_test) if element[1][:1] == 'B']))
print("Flares used test-C:", len([idx for idx, element in enumerate(dataset.valid_events_test) if element[1][:1] == 'C']))
print("Flares used test-M:", len([idx for idx, element in enumerate(dataset.valid_events_test) if element[1][:1] == 'M']))
print("Flares used test-X:", len([idx for idx, element in enumerate(dataset.valid_events_test) if element[1][:1] == 'X']))
def print_intersect_flare_stats(dataset):
print("Flares total:", len(dataset.valid_events_train_intersect))
print("Flares B:", len([idx for idx, element in enumerate(dataset.valid_events_train_intersect) if element[2][:1] == 'B']))
print("Flares C:", len([idx for idx, element in enumerate(dataset.valid_events_train_intersect) if element[2][:1] == 'C']))
print("Flares M:", len([idx for idx, element in enumerate(dataset.valid_events_train_intersect) if element[2][:1] == 'M']))
print("Flares X:", len([idx for idx, element in enumerate(dataset.valid_events_train_intersect) if element[2][:1] == 'X']))
def small_data(dataset):
ind_BC = [idx for idx, element in enumerate(dataset.valid_events_train) if element[1][:1] == 'B' or element[1][:1] == 'C']
ind_MX = [idx for idx, element in enumerate(dataset.valid_events_train) if element[1][:1] == 'M' or element[1][:1] == 'X']
ind = ind_MX[:16] + ind_BC[:16]
dataset.valid_events_train = [dataset.valid_events_train[i] for i in ind]
ind_BC = [idx for idx, element in enumerate(dataset.valid_events_test) if element[1][:1] == 'B' or element[1][:1] == 'C']
ind_MX = [idx for idx, element in enumerate(dataset.valid_events_test) if element[1][:1] == 'M' or element[1][:1] == 'X']
ind = ind_MX[:16] + ind_BC[:16]
dataset.valid_events_test = [dataset.valid_events_test[i] for i in ind]