forked from metalwhale/hand_tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hand_tracker.py
200 lines (161 loc) · 6.8 KB
/
hand_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import csv
import cv2
import numpy as np
import tensorflow as tf
class HandTracker():
r"""
Class to use Google's Mediapipe HandTracking pipeline from Python.
So far only detection of a single hand is supported.
Any any image size and aspect ratio supported.
Args:
palm_model: path to the palm_detection.tflite
joint_model: path to the hand_landmark.tflite
anchors_path: path to the csv containing SSD anchors
Ourput:
(21,2) array of hand joints.
Examples::
>>> det = HandTracker(path1, path2, path3)
>>> input_img = np.random.randint(0,255, 256*256*3).reshape(256,256,3)
>>> keypoints, bbox = det(input_img)
"""
def __init__(self, palm_model, joint_model, anchors_path,
box_enlarge=1.5, box_shift=0.2):
self.box_shift = box_shift
self.box_enlarge = box_enlarge
self.interp_palm = tf.lite.Interpreter(palm_model)
self.interp_palm.allocate_tensors()
self.interp_joint = tf.lite.Interpreter(joint_model)
self.interp_joint.allocate_tensors()
# reading the SSD anchors
with open(anchors_path, "r") as csv_f:
self.anchors = np.r_[
[x for x in csv.reader(csv_f, quoting=csv.QUOTE_NONNUMERIC)]
]
# reading tflite model paramteres
output_details = self.interp_palm.get_output_details()
input_details = self.interp_palm.get_input_details()
self.in_idx = input_details[0]['index']
self.out_reg_idx = output_details[0]['index']
self.out_clf_idx = output_details[1]['index']
self.in_idx_joint = self.interp_joint.get_input_details()[0]['index']
self.out_idx_joint = self.interp_joint.get_output_details()[0]['index']
# 90° rotation matrix used to create the alignment trianlge
self.R90 = np.r_[[[0,1],[-1,0]]]
# trianlge target coordinates used to move the detected hand
# into the right position
self._target_triangle = np.float32([
[128, 128],
[128, 0],
[ 0, 128]
])
self._target_box = np.float32([
[ 0, 0, 1],
[256, 0, 1],
[256, 256, 1],
[ 0, 256, 1],
])
def _get_triangle(self, kp0, kp2, dist=1):
"""get a triangle used to calculate Affine transformation matrix"""
dir_v = kp2 - kp0
dir_v /= np.linalg.norm(dir_v)
dir_v_r = dir_v @ self.R90.T
return np.float32([kp2, kp2+dir_v*dist, kp2 + dir_v_r*dist])
@staticmethod
def _triangle_to_bbox(source):
# plain old vector arithmetics
bbox = np.c_[
[source[2] - source[0] + source[1]],
[source[1] + source[0] - source[2]],
[3 * source[0] - source[1] - source[2]],
[source[2] - source[1] + source[0]],
].reshape(-1,2)
return bbox
@staticmethod
def _im_normalize(img):
return np.ascontiguousarray(
2 * ((img / 255) - 0.5
).astype('float32'))
@staticmethod
def _sigm(x):
return 1 / (1 + np.exp(-x) )
@staticmethod
def _pad1(x):
return np.pad(x, ((0,0),(0,1)), constant_values=1, mode='constant')
def predict_joints(self, img_norm):
self.interp_joint.set_tensor(
self.in_idx_joint, img_norm.reshape(1,256,256,3))
self.interp_joint.invoke()
joints = self.interp_joint.get_tensor(self.out_idx_joint)
return joints.reshape(-1,2)
def detect_hand(self, img_norm):
assert -1 <= img_norm.min() and img_norm.max() <= 1,\
"img_norm should be in range [-1, 1]"
assert img_norm.shape == (256, 256, 3),\
"img_norm shape must be (256, 256, 3)"
# predict hand location and 7 initial landmarks
self.interp_palm.set_tensor(self.in_idx, img_norm[None])
self.interp_palm.invoke()
out_reg = self.interp_palm.get_tensor(self.out_reg_idx)[0]
out_clf = self.interp_palm.get_tensor(self.out_clf_idx)[0,:,0]
# finding the best prediction
# TODO: replace it with non-max suppression
detecion_mask = self._sigm(out_clf) > 0.7
candidate_detect = out_reg[detecion_mask]
candidate_anchors = self.anchors[detecion_mask]
if candidate_detect.shape[0] == 0:
print("No hands found")
return None, None
# picking the widest suggestion while NMS is not implemented
max_idx = np.argmax(candidate_detect[:, 3])
# bounding box offsets, width and height
dx,dy,w,h = candidate_detect[max_idx, :4]
center_wo_offst = candidate_anchors[max_idx,:2] * 256
# 7 initial keypoints
keypoints = center_wo_offst + candidate_detect[max_idx,4:].reshape(-1,2)
side = max(w,h) * self.box_enlarge
# now we need to move and rotate the detected hand for it to occupy a
# 256x256 square
# line from wrist keypoint to middle finger keypoint
# should point straight up
# TODO: replace triangle with the bbox directly
source = self._get_triangle(keypoints[0], keypoints[2], side)
source -= (keypoints[0] - keypoints[2]) * self.box_shift
return source, keypoints
def preprocess_img(self, img):
# fit the image into a 256x256 square
shape = np.r_[img.shape]
pad = (shape.max() - shape[:2]).astype('uint32') // 2
img_pad = np.pad(
img,
((pad[0],pad[0]), (pad[1],pad[1]), (0,0)),
mode='constant')
img_small = cv2.resize(img_pad, (256, 256))
img_small = np.ascontiguousarray(img_small)
img_norm = self._im_normalize(img_small)
return img_pad, img_norm, pad
def __call__(self, img):
img_pad, img_norm, pad = self.preprocess_img(img)
source, keypoints = self.detect_hand(img_norm)
if source is None:
return None, None
# calculating transformation from img_pad coords
# to img_landmark coords (cropped hand image)
scale = max(img.shape) / 256
Mtr = cv2.getAffineTransform(
source * scale,
self._target_triangle
)
img_landmark = cv2.warpAffine(
self._im_normalize(img_pad), Mtr, (256,256)
)
joints = self.predict_joints(img_landmark)
# adding the [0,0,1] row to make the matrix square
Mtr = self._pad1(Mtr.T).T
Mtr[2,:2] = 0
Minv = np.linalg.inv(Mtr)
# projecting keypoints back into original image coordinate space
kp_orig = (self._pad1(joints) @ Minv.T)[:,:2]
box_orig = (self._target_box @ Minv.T)[:,:2]
kp_orig -= pad[::-1]
box_orig -= pad[::-1]
return kp_orig, box_orig