forked from brown-cs-224/Poisson-Stencil
-
Notifications
You must be signed in to change notification settings - Fork 0
/
poissonhelper.cpp
245 lines (211 loc) · 8.79 KB
/
poissonhelper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#include "poissonhelper.h"
#include <iostream>
#include <fstream>
#include <string>
#include <libigl/include/igl/copyleft/marching_cubes.h>
PoissonHelper::PoissonHelper()
{
}
int PoissonHelper::cubeToRowIndex(int x, int y, int z, int gridWidth, int gridHeight){
return x + gridWidth * y + gridWidth * gridHeight * z;
}
// Approximation to the inner product of <F, laplacian(F')>
float PoissonHelper::integral_f_dd_fPrime(float normalizedRadius)
{
if(normalizedRadius >= -1 && normalizedRadius < 0){
return 0.0f;
}
if(normalizedRadius >= 0.0f && normalizedRadius < 1.0f){
return -4.0f / 3.0f;
}
if(normalizedRadius >= 1.0f && normalizedRadius < 2){
return 2.0f / 3.0f;
}
return 0.0f;
}
// Approximation to the inner product of <F, gradient(F')>
float PoissonHelper::integral_f_d_fPrime(float normalizedRadius)
{
if(normalizedRadius >= -1 && normalizedRadius < 0){
return 0.0f;
}
if(normalizedRadius >= 0.0f && normalizedRadius < 1.0f){
return 1.0f;
}
if(normalizedRadius >= 1.0f && normalizedRadius < 2){
return -1.0f;
}
return 0.0f;
}
// Approximation to the inner product of <F, F'>
float PoissonHelper::integral_f_fPrime(float normalizedRadius)
{
if(normalizedRadius >= -1 && normalizedRadius < 0){
return 0.0;
}
if(normalizedRadius >= 0.0f && normalizedRadius < 1.0f){
return 0.45f;
}
if(normalizedRadius >= 1.0f && normalizedRadius < 2){
return 0.775f;
}
return 0.0f;
}
// The basis method we'll be using. Feel free to experiment with other
// bases.
float PoissonHelper::basis(float normalizedRadius)
{
if(normalizedRadius >= -1 && normalizedRadius < 0){
return 0.5f + normalizedRadius + 0.5f * normalizedRadius * normalizedRadius;
}
if(normalizedRadius >= 0.0f && normalizedRadius < 1.0f){
return 0.5f + normalizedRadius - normalizedRadius * normalizedRadius;
}
if(normalizedRadius >= 1.0f && normalizedRadius < 2){
return 2.0f - 2.0f * normalizedRadius + 0.5f * normalizedRadius * normalizedRadius;
}
return 0.0f;
}
// Fill look-up tables with inner products.
void PoissonHelper::fillLookupTables(int gridWidth, int gridHeight, int gridDepth)
{
for(int i = 0; i < gridWidth; i++){
for (int j = 0; j < gridHeight; j++){
for (int k = 0; k < gridDepth; k ++ ){
int index = cubeToRowIndex(i, j, k, gridWidth, gridHeight);
for(int m = -1; m < 2; m++){
for(int n = -1; n < 2; n++){
for(int z = -1;z < 2; z++){
int neighbor = cubeToRowIndex(i + m, j + n, z + k, gridWidth, gridHeight);
if(neighbor < 0 || i + m >= gridWidth || j + n >= gridHeight ||z + k >= gridDepth){
continue;
}
f_dot_fprime_x[index][neighbor] += integral_f_fPrime(m);
f_dot_dd_fprime_x[index][neighbor] += integral_f_dd_fPrime(m);
f_dot_d_fprime_x[index][neighbor] += integral_f_d_fPrime( m);
f_dot_fprime_y[index][neighbor] += integral_f_fPrime(n);
f_dot_dd_fprime_y[index][neighbor] += integral_f_dd_fPrime(n);
f_dot_d_fprime_y[index][neighbor] += integral_f_d_fPrime( n);
f_dot_fprime_z[index][neighbor] += integral_f_fPrime(z);
f_dot_dd_fprime_z[index][neighbor] += integral_f_dd_fPrime(z);
f_dot_d_fprime_z[index][neighbor] += integral_f_d_fPrime( z);
}
}
}
}
}
}
}
// Use libigl to mesh the implicit function, given an isovalue
void PoissonHelper::marchingCubes(Eigen::VectorXf surface, float isoValue, int voxelGridWidth, int voxelGridHeight,
int voxelGridDepth, float cellWidth, Vector3f corner, Eigen::MatrixXf &V, Eigen::MatrixXi &F)
{
Eigen::MatrixXf points(voxelGridDepth * voxelGridHeight * voxelGridWidth, 3);
for(int i = 0; i < voxelGridWidth; i++){
for(int j = 0; j < voxelGridHeight; j++){
for(int k = 0; k < voxelGridDepth; k++){
points(cubeToRowIndex(i, j, k, voxelGridWidth, voxelGridHeight), 0) = corner[0] + cellWidth * i;
points(cubeToRowIndex(i, j, k, voxelGridWidth, voxelGridHeight), 1) = corner[1] + cellWidth * j;
points(cubeToRowIndex(i, j, k, voxelGridWidth, voxelGridHeight), 2) = corner[2] + cellWidth * k;
}
}
}
igl::copyleft::marching_cubes(surface, points, voxelGridWidth, voxelGridHeight, voxelGridDepth, isoValue, V, F);
}
// load in a point cloud
void PoissonHelper::loadPointsFromFile(const std::string &filePath, std::vector<Vector3f> &positions, std::vector<Vector3f> &normals)
{
std::ifstream pointFile;
pointFile.open(filePath.c_str());
if(pointFile.is_open()){
string data;
bool past_header = false;
while (getline(pointFile, data)) {
if(!past_header && strcmp(data.c_str(), "end_header")){
past_header = true;
}
if(!past_header){
continue;
}
std::vector<string> lineData;
char *dup = strdup(data.c_str());
char * split = strtok(dup, " ");
while(split != NULL)
{
lineData.push_back(split);
split = strtok(NULL, " ");
}
if(lineData.size() < 6){
continue;
}
positions.push_back( Vector3f(stof(lineData[0]), stof(lineData[1]), stof(lineData[2])));
normals.push_back( Vector3f(stof(lineData[3]), stof(lineData[4]), stof(lineData[5])));
}
std::cout << "Loaded data" << std::endl;
} else {
std::cerr << "Failed to load/parse input file" << std::endl;
return;
}
}
// You get this for free! Given a point cloud, determine the dimensions
// of the uniform grid, the size of each individual cell, and the
// lower/left/back corner of the entire uniform grid.
void PoissonHelper::getGridDimensions(const std::vector<Vector3f> &positions, int &voxelGridWidth, int &voxelGridHeight,
int &voxelGridDepth, float &cellWidth, Vector3f &corner)
{
float maxX = -std::numeric_limits<float>::infinity();
float maxY = -std::numeric_limits<float>::infinity();
float maxZ = -std::numeric_limits<float>::infinity();
float minX = std::numeric_limits<float>::infinity();
float minY = std::numeric_limits<float>::infinity();
float minZ = std::numeric_limits<float>::infinity();
for(int i = 0; i < positions.size(); i++){
if(positions[i][0] > maxX){
maxX = positions[i][0];
}
if(positions[i][1] > maxY){
maxY = positions[i][1];
}
if(positions[i][2] > maxZ){
maxZ = positions[i][2];
}
if(positions[i][0] < minX){
minX = positions[i][0];
}
if(positions[i][1] < minY){
minY = positions[i][1];
}
if(positions[i][2] < minZ){
minZ = positions[i][2];
}
}
std::cout << "Bounding Box: " << minX << " " << maxX << " " << minY << " " << maxY << " " << minZ << " " << maxZ <<" " << positions.size() << std::endl;
// number of extra grid cells on each side of the voxel cube
float padding = 8.0;
// 20 is an arbitrary number that can be thought of as the granularity of the
// uniform grid. As this number increases, the grid will become denser, and the
// program will take longer to run. Unless, of course, you'd like to try an octree...
cellWidth = (maxX - minX) / 20.0f;
voxelGridWidth = ceil( ((maxX - minX) + 2 * padding * cellWidth) / cellWidth);
voxelGridHeight = ceil( ((maxY - minY) + 2 * padding * cellWidth) / cellWidth);
voxelGridDepth = ceil( ((maxZ - minZ) + 2 * padding * cellWidth) / cellWidth) ;
corner = Vector3f(minX - padding * cellWidth, minY - padding * cellWidth, minZ - padding * cellWidth);
}
// You get this for free! Given vertices and faces, write the mesh out to file.
void PoissonHelper::saveAsMesh(const std::string &filePath,const MatrixXf &vertices,
const MatrixXi &faces)
{
std::ofstream outfile;
outfile.open(filePath);
// Write vertices
for (size_t i = 0; i < vertices.rows(); i++)
{
outfile << "v " << vertices(i,0) << " " << vertices(i,1) << " " << vertices(i,2) << std::endl;
}
// Write faces
for (size_t i = 0; i < faces.rows(); i++)
{
outfile << "f " << (faces(i,0) + 1) << " " << (faces(i, 1) + 1) << " " << (faces(i,2) + 1) << std::endl;
}
outfile.close();
}