tags |
---|
Rscript, macmanes |
updated...
library(tidyverse)
library(lubridate)
library(readr)
cageweight0 <- 20.1
cageweight1 <- 22.6
cageweight2 <- 21.1
cageweight3 <- 23.1
cageweight4 <- 21.8
cageweight5 <- 15.6
cageweight6 <- 15.4
animalID0 <- 377
animalID1 <- 234
animalID2 <- 748
animalID3 <- 1002
animalID4 <- 870
animalID5 <- 333
animalID6 <- 74
datafile <- "/Volumes/4TB_1/Dropbox/Cactus_Mouse_Physiology/data/20Feb20/feb20.csv"
feb20 <- read_csv(datafile,
col_types = cols(Animal = col_double(),
StartDate = col_date(format = "%m/%d/%Y"),
deltaCO2 = col_double(),
deltaH2O = col_double(),
H2Oml = col_double(),
VCO2 = col_double(),
StartTime = col_time(format = "%H:%M:%S")))
'%!in%' <- function(x,y)!('%in%'(x,y))
feb20 <- feb20 %>%
mutate(EE = 0.06*(3.941*VO2 + 1.106*VCO2)) %>%
mutate(RQ = VCO2/VO2) %>%
mutate(animal = round(Animal, digits=0)) %>%
mutate(Animal = NULL) %>%
unite("DateTime", StartDate:StartTime, remove = FALSE, sep = " ") %>%
mutate(weight =
ifelse(animal == 0, cageweight0,
ifelse(animal == 1, cageweight1,
ifelse(animal == 2, cageweight2,
ifelse(animal == 3, cageweight3,
ifelse(animal == 4, cageweight4,
ifelse(animal == 5, cageweight5,
ifelse(animal == 6, cageweight6, NA)))))))) %>%
mutate(Animal_ID =
ifelse(animal == 0, animalID0,
ifelse(animal == 1, animalID1,
ifelse(animal == 2, animalID2,
ifelse(animal == 3, animalID3,
ifelse(animal == 4, animalID4,
ifelse(animal == 5, animalID5,
ifelse(animal == 6, animalID6, NA)))))))) %>%
mutate(H2Omg_edit =
ifelse(hour(StartTime) == 8, H2Omg - 0.09536454,
ifelse(hour(StartTime) == 7, H2Omg - 0.06536454,
ifelse(hour(StartTime) == 9, H2Omg - 0.02219424,
ifelse(hour(StartTime) == 10, H2Omg - 0.03273413,
ifelse(hour(StartTime) == 19, H2Omg + 0.002130708,
ifelse(hour(StartTime) == 20, H2Omg + 0.02967473,
ifelse(hour(StartTime) == 21, H2Omg + 0.02703453,
ifelse(hour(StartTime) == 22, H2Omg + 0.01412046,
ifelse(hour(StartTime) %!in% c(7,8,9,10,20,21,22,19), H2Omg, NA)))))))))) %>%
mutate_at("H2Omg_edit", as.numeric) %>%
mutate(corEE = EE/weight)
metric <- "corEE"
target <- c(0,1,2,3,4,5,6)
cages <- feb20 %>% filter(animal %in% target)
#cages <- with( cages ,cages[ hour( StartTime ) >= 0 & hour( StartTime ) < 4 , ] )
measurement <- cages %>% select(metric)
df<-as.data.frame(measurement[[metric]])
legend_title <- "Animal ID"
p <- ggplot(data = cages,aes(x=as.POSIXct(StartTime),y=measurement[[metric]]))
p <- p + geom_point(aes(group=as.factor(Animal_ID), color=as.factor(Animal_ID)), size = 3)
p <- p + theme_grey(base_size = 15)
p <- p + geom_smooth(data=df$V1, method='loess', span=.9)
p <- p + labs(x = "", y = metric)
p <- p + scale_color_brewer(legend_title, palette="Paired")
p <- p + scale_x_datetime(date_breaks = "2 hours", date_labels = "%H:%M")
#p <- p + geom_hline(yintercept = 0.8907387)
p
#load packages
library(tidyverse)
library(lubridate)
library(readr)
# import data
datafile <- "/Users/macmanes/Desktop/overnight.csv"
# should not have to change below except how you name the dataset e.g., travelingmouse
newdata <- read_csv(datafile,
col_types = cols(Animal = col_character(),
StartDate = col_date(format = "%m/%d/%y"),
StartTime = col_time(format = "%H:%M:%S")))
View(newdata)
# Change variables to plot VO2, in this case.
metric <- "VO2"
SD <- "SD_VO2"
measurement <- waterrandomsampling %>% select(metric)
measurement_SD <- waterrandomsampling %>% select(SD)
waterrandomsampling %>%
ggplot(aes(as.POSIXct(with(waterrandomsampling, StartDate + hms(StartTime))),
y = measurement[[metric]], group=Animal, color=Animal)) +
geom_line() +
labs(x = "", y = metric) +
scale_color_brewer(palette="Paired") +
geom_pointrange(aes(ymax = c(measurement[[metric]] + measurement_SD[[SD]]), ymin = c(measurement[[metric]] - measurement_SD[[SD]]))) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_x_datetime(date_breaks = "2 hours", date_labels = "%d%b %H:%M")
change the metric and SD, and number of animal you want to subsample
library(tidyverse)
library(lubridate)
library(readr)
datafile <- "/Users/macmanes/Desktop/waterrandomsampling.csv"
waterrandomsampling <- read_csv(datafile,
col_types = cols(Animal = col_character(),
StartDate = col_date(format = "%m/%d/%y"),
StartTime = col_time(format = "%H:%M:%S")))
View(waterrandomsampling)
metric <- "VO2"
SD <- "SD_VO2"
animal <- 6
measurement <- waterrandomsampling %>% filter(Animal != animal) %>% select(metric)
measurement_SD <- waterrandomsampling %>% filter(Animal != animal) %>% select(SD)
waterrandomsampling %>% filter(Animal != animal) %>%
ggplot(aes(as.POSIXct(with(waterrandomsampling %>% filter(Animal != animal), StartDate + hms(StartTime))),
y = measurement[[metric]], group=Animal, color=Animal)) +
geom_line() +
labs(x = "", y = metric) +
scale_color_brewer(palette="Paired") +
geom_pointrange(aes(ymax = c(measurement[[metric]] + measurement_SD[[SD]]), ymin = c(measurement[[metric]] - measurement_SD[[SD]]))) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_x_datetime(date_breaks = "2 hours", date_labels = "%d%b %H:%M")
attach(travelingmouse)
newdata <- travelingmouse[order(StartTime),]
plot(newdata$VO2, type="l", ylab="VO2", xaxt="n", xlab="Cage Numbers", frame.plot = F, lwd=3, col='red')
abline(h=0)
axis(1, at=1:27, labels=c(0,1,2,3,4,5,6,0,1,2,3,4,5,6,0,1,2,3,4,5,6,0,1,2,3,4,5))
- Need to work with Dani/Jocie to make sure at least VO2 makes sense, cause it did in the raw data.. Otherwise this is a macro issue
- Also note that O2 != VO2, but still..
datafile <- "/Volumes/MACMANES/15Feb20/cages135.csv"
cages135 <- read_csv(datafile,
col_types = cols(Animal = col_character(),
StartDate = col_date(format = "%m/%d/%y"),
StartTime = col_time(format = "%H:%M:%S")))
cages135 <- cages135 %>% mutate(EE = 0.06*(3.941*VO2 + 1.106*VCO2))
cages135 <- cages135 %>% mutate(RQ = VCO2/VO2)
metric <- "EE"
SD <- "SD_H2Omg"
target <- c(1,3,5)
cages <- cages135 %>% filter(Animal %in% target)
measurement <- cages %>% select(metric)
df<-as.data.frame(measurement[[metric]])
p <- ggplot(data = cages,aes(x=as.POSIXct(StartTime),y=measurement[[metric]]))
p <- p + geom_point(aes(group=Animal, color=Animal))
p <- p + geom_smooth(data=df$V1)
p <- p + labs(x = "", y = metric)
p <- p + scale_color_brewer(palette="Paired")
p <- p + scale_x_datetime(date_breaks = "2 hours", date_labels = "%H:%M")
p