DataFrame df1
+-------------+--------+
| Column Name | Type |
+-------------+--------+
| student_id | int |
| name | object |
| age | int |
+-------------+--------+
DataFrame df2
+-------------+--------+
| Column Name | Type |
+-------------+--------+
| student_id | int |
| name | object |
| age | int |
+-------------+--------+
Write a solution to concatenate these two DataFrames vertically into one DataFrame.
The result format is in the following example.
Example 1:
Input:
df1
+------------+---------+-----+
| student_id | name | age |
+------------+---------+-----+
| 1 | Mason | 8 |
| 2 | Ava | 6 |
| 3 | Taylor | 15 |
| 4 | Georgia | 17 |
+------------+---------+-----+
df2
+------------+------+-----+
| student_id | name | age |
+------------+------+-----+
| 5 | Leo | 7 |
| 6 | Alex | 7 |
+------------+------+-----+
Output:
+------------+---------+-----+
| student_id | name | age |
+------------+---------+-----+
| 1 | Mason | 8 |
| 2 | Ava | 6 |
| 3 | Taylor | 15 |
| 4 | Georgia | 17 |
| 5 | Leo | 7 |
| 6 | Alex | 7 |
+------------+---------+-----+
Explanation:
The two DataFramess are stacked vertically, and their rows are combined.
Solution
import pandas as pd
def concatenateTables(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:
return pd.concat([df1, df2])
if __name__ == '__main__':
data1 = [[1, 'Mason', 8],
[2, 'Ava', 6],
[3, 'Taylor', 15],
[4, 'Georgia', 17]]
data2 = [[5, 'Leo', 7],
[6, 'Alex', 7]]
df1 = pd.DataFrame(data1, columns=['student_id', 'name', 'age'])
df2 = pd.DataFrame(data2, columns=['student_id', 'name', 'age'])
print(concatenateTables(df1, df2))