Skip to content

Latest commit

 

History

History
250 lines (216 loc) · 6.96 KB

README.md

File metadata and controls

250 lines (216 loc) · 6.96 KB

bench_multiregion

Benchmark of M3 in a multi-region environment, currently only supported for GKE.

GKE Guide

1. Provision Kubernetes clusters in multiple regions

Provision a regional Kubernetes cluster in each region you will run the benchmark.

To achieve best performance, set the following attributes for nodes (lower resources work fine, they will not perform as many writes per second however):

  • Machine type n1-highmem-32 (32 vCPUs, 208 GB memory)

Set your GCP project context:

gcloud config set project $PROJECT_NAME

Retrieve the credentials for each cluster:

gcloud container clusters get-credentials --region $REGION $CLUSTER_NAME

2. Create M3DB cluster in each region

Set the context for the region:

# List contexts
kubectl config get-contexts
# Set context
kubectl config use-context $CONTEXT_NAME

For GKE we must set a cluster admin binding first for the installation:

kubectl create clusterrolebinding cluster-admin-binding --clusterrole=cluster-admin --user=$EMAIL

Install the operator:

kubectl apply -f https://raw.githubusercontent.com/m3db/m3db-operator/master/bundle.yaml

Create an etcd cluster:

kubectl apply -f https://raw.githubusercontent.com/m3db/m3db-operator/master/example/etcd/etcd-basic.yaml

Let's create a storage class, for this example we use SSDs, named something like m3-cluster-storage-class.yml:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: topology-aware-ssd
provisioner: kubernetes.io/gce-pd
# WaitForFirstConsumer required with k8s 1.12 
volumeBindingMode: WaitForFirstConsumer
parameters:
  type: pd-ssd

Now apply:

kubectl apply -f $STORAGE_CLASS_YAML_FILE

Let's also apply the sysctl-setter daemon set to make sure the correct system values are set:

kubectl apply -f https://raw.githubusercontent.com/m3db/m3/master/kube/sysctl-daemonset.yaml

Create a spec for cluster (see examples for an example):

apiVersion: operator.m3db.io/v1alpha1
kind: M3DBCluster
metadata:
  name: m3-cluster
spec:
  image: quay.io/m3db/m3dbnode:latest
  replicationFactor: 3
  numberOfShards: 1024
  etcdEndpoints:
  - http://etcd-0.etcd:2379
  - http://etcd-1.etcd:2379
  - http://etcd-2.etcd:2379
  isolationGroups:
  - name: group1
    numInstances: 10
    nodeAffinityTerms:
    - key: failure-domain.beta.kubernetes.io/zone
      values:
      - <zone-a>
  - name: group2
    numInstances: 10
    nodeAffinityTerms:
    - key: failure-domain.beta.kubernetes.io/zone
      values:
      - <zone-b>
  - name: group3
    numInstances: 10
    nodeAffinityTerms:
    - key: failure-domain.beta.kubernetes.io/zone
      values:
      - <zone-c>
  podIdentityConfig:
    sources: []
  namespaces:
  - name: bench-10s:14d
    options:
      bootstrapEnabled: true
      flushEnabled: true
      writesToCommitLog: true
      cleanupEnabled: true
      snapshotEnabled: true
      repairEnabled: false
      retentionOptions:
        retentionPeriod: 336h
        blockSize: 2h
        bufferFuture: 10m
        bufferPast: 10m
        blockDataExpiry: true
        blockDataExpiryAfterNotAccessPeriod: 10m
      indexOptions:
        enabled: true
        blockSize: 2h
  dataDirVolumeClaimTemplate:
    metadata:
      name: m3db-data
    spec:
      # Note: using the storage class we created
      storageClassName: topology-aware-ssd
      accessModes:
      - ReadWriteOnce
      resources:
        requests:
          storage: 500Gi

Apply the manifest:

kubectl apply -f $SPEC_YAML_FILE

Ensure nodes are provisioning:

watch -n 1 -- kubectl get po -l operator.m3db.io/app=m3db

3. Install dedicated coordinator in each region

Now we will create a m3coordinator dedicated deployment, so that writes and reads are issued from a process isolated from the DB nodes.

Create values for the config template in a file named something like m3coordinator-deployment-values.yaml:

cluster_namespace: m3db
cluster_name: bench-cluster-m3coordinator
num_coordinators: 30
namespaces:
- name: bench-10s:14d
  type: unaggregated
  retention: 336h
etcd_endpoints:
- http://etcd-0.etcd:2379
- http://etcd-1.etcd:2379
- http://etcd-2.etcd:2379

Now apply the config using helm to template and execute the resulting manifests:

# Set repo path to where your repo is locally
export REPO_OPERATOR_PATH=$GOPATH/src/github.com/m3db/m3db-operator
# Set the values file to the file you just created
export VALUES_YAML_FILE=./examples/m3coordinator-deployment-values.yaml
# Run the template
helm template -f $VALUES_YAML_FILE ${REPO_OPERATOR_PATH}/helm/m3coordinator > ./examples/generated/m3coordinator-specs.yml
# Adjust if required and then apply the manifest
kubectl apply -f ./examples/generated/m3coordinator-specs.yml

4. Monitor the clusters with Prometheus in each region

Let's get some visibility on how the clusters are doing. We will setup a Prometheus in each region.

Install the Prometheus operator:

kubectl apply -f https://raw.githubusercontent.com/coreos/prometheus-operator/master/bundle.yaml

Create the manifests to start prometheus, grafana, node-exporter, etc:

kubectl create -f ./examples/kube-prometheus-manifests

Create a service monitor to start scraping the M3DB nodes:

kubectl apply -f ./examples/prometheus-servicemonitor-dbnode.yaml

Create another service monitor to start scraping the coordinators:

kubectl apply -f ./examples/prometheus-servicemonitor-coordinator.yaml

Port forward to access Prometheus and Grafana:

kubectl --namespace monitoring port-forward svc/prometheus-k8s 9090
kubectl --namespace monitoring port-forward svc/grafana 3000

Add the following dashboard to Grafana: https://grafana.com/dashboards/8126.

5. Add load from promremotebench

Create a manifest to launch Prometheus remote write benchmarkers. They simulate load from node exporter nodes.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: promremotebench
spec:
  replicas: 10
  selector:
    matchLabels:
      k8s-app: promremotebench
  template:
    metadata:
      labels:
        k8s-app: promremotebench
    spec:
      containers:
      - name: promremotebench
        image: quay.io/m3db/promremotebench
        env:
        - name: PROMREMOTEBENCH_TARGET
          value: "http://m3coordinator-dedicated-bench-cluster:7201/api/v1/prom/remote/write"
        - name: PROMREMOTEBENCH_NUM_HOSTS
          value: "1000"
        - name: PROMREMOTEBENCH_INTERVAL
          value: "10"
        - name: PROMREMOTEBENCH_BATCH
          value: "128"

Now apply the manifest:

kubectl apply -f $PROMREMOTEBENCH_DEPLOYMENT_YAML_FILE

Now the rough rule of thumb is that every replica of the benchmarkers is ballpark around 1,000 writes per second load each. To get to desired writes per second, step up the writes in increments of 50,000 or so (i.e. adding 50 replicas each step). You should monitor your cluster to see how it's doing it at each increment.