-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pretrain.py
209 lines (169 loc) · 7.86 KB
/
run_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import json
import numpy as np
import os
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
#from torch.utils.tensorboard import SummaryWriter
from tensorboardX import SummaryWriter
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import utils.misc as misc
from utils.misc import NativeScalerWithGradNormCount as NativeScaler
import swin_mae
import utils_f
from utils.engine_pretrain import train_one_epoch
from datasets import build_pretraining_dataset
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
# common parameters
parser.add_argument('--batch_size', default=96, type=int)
parser.add_argument('--epochs', default=400, type=int)
parser.add_argument('--save_freq', default=1, type=int)
#parser.add_argument('--checkpoint_encoder', default='', type=str)
#parser.add_argument('--checkpoint_decoder', default='', type=str)
parser.add_argument('--data_path', default=r'/data/path', type=str) # fill in the dataset path here
parser.add_argument('--mask_ratio', default=0.75, type=float,
help='Masking ratio (percentage of removed patches).')
# model parameters
parser.add_argument('--model', default='swin_mae', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--resume', type=str,default='',
help='resume path')
parser.add_argument('--finetune', type=str,default='',
help='finetune path')
parser.add_argument('--input_size', default=224, type=int,
help='images input size')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# optimizer parameters
parser.add_argument('--accum_iter', default=1, type=int)
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
# other parameters
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
utils_f.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils_f.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
# Set model
model = swin_mae.__dict__[args.model](norm_pix_loss=args.norm_pix_loss, mask_ratio=args.mask_ratio)
mean = 0.223
std = 0.202
# get dataset
transform_train = transforms.Compose([
transforms.Resize((args.input_size, args.input_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
### normalize with rin mean and std
transforms.Normalize(
mean=torch.tensor(mean),
std=torch.tensor(std))
])
# Set dataset
dataset_train = datasets.ImageFolder(args.data_path, transform=transform_train)
if True: # args.distributed:
num_tasks = utils_f.get_world_size()
global_rank = utils_f.get_rank()
sampler_rank = global_rank
num_training_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
worker_init_fn=utils_f.seed_worker
)
# Log output
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(logdir=args.log_dir)
#log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
model.to(device)
model_without_ddp = model
# Set optimizer
param_groups = [p for p in model_without_ddp.parameters() if p.requires_grad]
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, weight_decay=5e-2, betas=(0.9, 0.95))
loss_scaler = NativeScaler()
# Create model
misc.load_model(args=args, model_without_ddp=model_without_ddp)
best_loss = 100
# Start the training process
base_epoch = 0
if args.resume!='':
base_epoch = args.resume.split('/')[-1]
base_epoch = base_epoch.split('-')[-1]
base_epoch = int(base_epoch.replace('.pth',''))
print(f"Start training for {args.epochs} epochs")
for epoch in range(args.start_epoch, args.epochs):
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args
)
if args.output_dir and ((epoch + 1) % args.save_freq == 0 or epoch + 1 == args.epochs):
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch + 1)
if best_loss> train_stats["train_loss"]:
best_loss = train_stats["train_loss"]
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch="best")
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch, }
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
if __name__ == '__main__':
arg = get_args_parser()
arg = arg.parse_args()
if arg.output_dir:
Path(arg.output_dir).mkdir(parents=True, exist_ok=True)
main(arg)