This tutorial is based on Ubuntu-18.04 and Rockchip NPU rk3588
. For different NPU devices, you may have to use different rknn packages.
Below is a table describing the relationship:
Device | Python Package | c/c++ SDK |
---|---|---|
RK1808/RK1806 | rknn-toolkit | rknpu |
RV1109/RV1126 | rknn-toolkit | rknpu |
RK3566/RK3568/RK3588 | rknn-toolkit2 | rknpu2 |
RV1103/RV1106 | rknn-toolkit2 | rknpu2 |
It is recommended to create a virtual environment for the project.
-
Get RKNN-Toolkit2 or RKNN-Toolkit through git. RKNN-Toolkit2 for example:
git clone [email protected]:rockchip-linux/rknn-toolkit2.git
-
Install RKNN python package following rknn-toolkit2 doc or rknn-toolkit doc. When installing rknn python package, it is better to append
--no-deps
after the commands to avoid dependency conflicts. RKNN-Toolkit2 package for example:pip install packages/rknn_toolkit2-1.2.0_f7bb160f-cp36-cp36m-linux_x86_64.whl --no-deps
-
Install ONNX==1.8.0 before reinstall MMDeploy from source following the instructions. Note that there are conflicts between the pip dependencies of MMDeploy and RKNN. Here is the suggested packages versions for python 3.6:
protobuf==3.19.4 onnx==1.8.0 onnxruntime==1.8.0 torch==1.8.0 torchvision==0.9.0
-
Install torch and torchvision using conda. For example:
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge
To work with models from MMClassification, you may need to install it additionally.
Example:
python tools/deploy.py \
configs/mmcls/classification_rknn_static.py \
/mmclassification_dir/configs/resnet/resnet50_8xb32_in1k.py \
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth \
/mmclassification_dir/demo/demo.JPEG \
--work-dir ../resnet50 \
--device cpu
With the deployment config, you can modify the backend_config
for your preference. An example backend_config
of mmclassification is shown as below:
backend_config = dict(
type='rknn',
common_config=dict(
mean_values=None,
std_values=None,
target_platform='rk3588',
optimization_level=3),
quantization_config=dict(do_quantization=False, dataset=None),
input_size_list=[[3, 224, 224]])
The contents of common_config
are for rknn.config()
. The contents of quantization_config
are used to control rknn.build()
. You may have to modify target_platform
for your own preference.
-
Get rknpu2 through git:
git clone [email protected]:rockchip-linux/rknpu2.git
-
For linux, download gcc cross compiler. The download link of the compiler from the official user guide of
rknpu2
was deprecated. You may use another verified link. After download and unzip the compiler, you may open the terminal, setRKNN_TOOL_CHAIN
andRKNPU2_DEVICE_DIR
byexport RKNN_TOOL_CHAIN=/path/to/gcc/usr;export RKNPU2_DEVICE_DIR=/path/to/rknpu2/runtime/RK3588
. -
after the above preparition, run the following commands:
cd /path/to/mmdeploy
mkdir -p build && rm -rf build/CM* && cd build
export LD_LIBRARY_PATH=$RKNN_TOOL_CHAIN/lib64:$LD_LIBRARY_PATH
cmake \
-DCMAKE_TOOLCHAIN_FILE=/path/to/mmdeploy/cmake/toolchains/rknpu2-linux-gnu.cmake \
-DMMDEPLOY_BUILD_SDK=ON \
-DCMAKE_BUILD_TYPE=Debug \
-DOpenCV_DIR=${RKNPU2_DEVICE_DIR}/../../examples/3rdparty/opencv/opencv-linux-aarch64/share/OpenCV \
-DMMDEPLOY_BUILD_SDK_PYTHON_API=ON \
-DMMDEPLOY_TARGET_DEVICES="cpu" \
-DMMDEPLOY_TARGET_BACKENDS="rknn" \
-DMMDEPLOY_CODEBASES=all \
-DMMDEPLOY_BUILD_TEST=ON \
-DMMDEPLOY_BUILD_EXAMPLES=ON \
..
make && make install
First make sure that--dump-info
is used during convert model, so that the working directory has the files required by the SDK such as pipeline.json
.
adb push
the model directory, executable file and .so to the device.
cd /path/to/mmdeploy
adb push resnet50 /data/local/tmp/resnet50
adb push /mmclassification_dir/demo/demo.JPEG /data/local/tmp/resnet50/demo.JPEG
cd build
adb push lib /data/local/tmp/lib
adb push bin/image_classification /data/local/tmp/image_classification
Set up environment variable and execute the sample.
adb shell
cd /data/local/tmp
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/data/local/tmp/lib
./image_classification cpu ./resnet50 ./resnet50/demo.JPEG
..
label: 65, score: 0.95
-
MMDet models.
YOLOV3 & YOLOX: you may paste the following partition configuration into detection_rknn_static.py:
# yolov3, yolox for rknn-toolkit and rknn-toolkit2 partition_config = dict( type='rknn', # the partition policy name apply_marks=True, # should always be set to True partition_cfg=[ dict( save_file='model.onnx', # name to save the partitioned onnx start=['detector_forward:input'], # [mark_name:input, ...] end=['yolo_head:input'], # [mark_name:output, ...] output_names=[f'pred_maps.{i}' for i in range(3)]) # output names ])
RetinaNet & SSD & FSAF with rknn-toolkit2, you may paste the following partition configuration into detection_rknn_static.py. Users with rknn-toolkit can directly use default config.
# retinanet, ssd partition_config = dict( type='rknn', # the partition policy name apply_marks=True, partition_cfg=[ dict( save_file='model.onnx', start='detector_forward:input', end=['BaseDenseHead:output'], output_names=[f'BaseDenseHead.cls.{i}' for i in range(5)] + [f'BaseDenseHead.loc.{i}' for i in range(5)]) ])
-
SDK only supports int8 rknn model, which require
do_quantization=True
when converting models.