-
-
Notifications
You must be signed in to change notification settings - Fork 318
/
rtdetr_transformer.py
523 lines (461 loc) · 20.9 KB
/
rtdetr_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register
from ..layers import MultiHeadAttention
from .deformable_transformer import MSDeformableAttention
from ..initializer import (linear_init_, constant_, xavier_uniform_, normal_,
bias_init_with_prob)
from .utils import (_get_clones, get_sine_pos_embed,
get_contrastive_denoising_training_group, inverse_sigmoid, MLP)
__all__ = ['RTDETRTransformer']
class PPMSDeformableAttention(MSDeformableAttention):
def forward(self,
query,
reference_points,
value,
value_spatial_shapes,
value_level_start_index,
value_mask=None):
"""
Args:
query (Tensor): [bs, query_length, C]
reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
bottom-right (1, 1), including padding area
value (Tensor): [bs, value_length, C]
value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
value_level_start_index (List): [n_levels], [0, H_0*W_0, H_0*W_0+H_1*W_1, ...]
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
Returns:
output (Tensor): [bs, Length_{query}, C]
"""
bs, Len_q = query.shape[:2]
Len_v = value.shape[1]
value = self.value_proj(value)
if value_mask is not None:
value_mask = value_mask.astype(value.dtype).unsqueeze(-1)
value *= value_mask
value = value.reshape([bs, Len_v, self.num_heads, self.head_dim])
sampling_offsets = self.sampling_offsets(query).reshape(
[bs, Len_q, self.num_heads, self.num_levels, self.num_points, 2])
attention_weights = self.attention_weights(query).reshape(
[bs, Len_q, self.num_heads, self.num_levels * self.num_points])
attention_weights = F.softmax(attention_weights).reshape(
[bs, Len_q, self.num_heads, self.num_levels, self.num_points])
if reference_points.shape[-1] == 2:
offset_normalizer = paddle.to_tensor(value_spatial_shapes)
offset_normalizer = offset_normalizer.flip([1]).reshape(
[1, 1, 1, self.num_levels, 1, 2])
sampling_locations = reference_points.reshape([
bs, Len_q, 1, self.num_levels, 1, 2
]) + sampling_offsets / offset_normalizer
elif reference_points.shape[-1] == 4:
sampling_locations = (
reference_points[:, :, None, :, None, :2] + sampling_offsets /
self.num_points * reference_points[:, :, None, :, None, 2:] *
0.5)
else:
raise ValueError(
"Last dim of reference_points must be 2 or 4, but get {} instead.".
format(reference_points.shape[-1]))
if not isinstance(query, paddle.Tensor):
from ppdet.modeling.transformers.utils import deformable_attention_core_func
output = deformable_attention_core_func(
value, value_spatial_shapes, value_level_start_index,
sampling_locations, attention_weights)
else:
value_spatial_shapes = paddle.to_tensor(value_spatial_shapes)
value_level_start_index = paddle.to_tensor(value_level_start_index)
output = self.ms_deformable_attn_core(
value, value_spatial_shapes, value_level_start_index,
sampling_locations, attention_weights)
output = self.output_proj(output)
return output
class TransformerDecoderLayer(nn.Layer):
def __init__(self,
d_model=256,
n_head=8,
dim_feedforward=1024,
dropout=0.,
activation="relu",
n_levels=4,
n_points=4,
weight_attr=None,
bias_attr=None):
super(TransformerDecoderLayer, self).__init__()
# self attention
self.self_attn = MultiHeadAttention(d_model, n_head, dropout=dropout)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(
d_model,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
# cross attention
self.cross_attn = PPMSDeformableAttention(d_model, n_head, n_levels,
n_points, 1.0)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(
d_model,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
# ffn
self.linear1 = nn.Linear(d_model, dim_feedforward, weight_attr,
bias_attr)
self.activation = getattr(F, activation)
self.dropout3 = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model, weight_attr,
bias_attr)
self.dropout4 = nn.Dropout(dropout)
self.norm3 = nn.LayerNorm(
d_model,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
self._reset_parameters()
def _reset_parameters(self):
linear_init_(self.linear1)
linear_init_(self.linear2)
xavier_uniform_(self.linear1.weight)
xavier_uniform_(self.linear2.weight)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt):
return self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
def forward(self,
tgt,
reference_points,
memory,
memory_spatial_shapes,
memory_level_start_index,
attn_mask=None,
memory_mask=None,
query_pos_embed=None):
# self attention
q = k = self.with_pos_embed(tgt, query_pos_embed)
if attn_mask is not None:
attn_mask = paddle.where(
attn_mask.astype('bool'),
paddle.zeros(attn_mask.shape, tgt.dtype),
paddle.full(attn_mask.shape, float("-inf"), tgt.dtype))
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=attn_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# cross attention
tgt2 = self.cross_attn(
self.with_pos_embed(tgt, query_pos_embed), reference_points, memory,
memory_spatial_shapes, memory_level_start_index, memory_mask)
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
# ffn
tgt2 = self.forward_ffn(tgt)
tgt = tgt + self.dropout4(tgt2)
tgt = self.norm3(tgt)
return tgt
class TransformerDecoder(nn.Layer):
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
super(TransformerDecoder, self).__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
def forward(self,
tgt,
ref_points_unact,
memory,
memory_spatial_shapes,
memory_level_start_index,
bbox_head,
score_head,
query_pos_head,
attn_mask=None,
memory_mask=None):
output = tgt
dec_out_bboxes = []
dec_out_logits = []
ref_points_detach = F.sigmoid(ref_points_unact)
for i, layer in enumerate(self.layers):
ref_points_input = ref_points_detach.unsqueeze(2)
query_pos_embed = query_pos_head(ref_points_detach)
output = layer(output, ref_points_input, memory,
memory_spatial_shapes, memory_level_start_index,
attn_mask, memory_mask, query_pos_embed)
inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(
ref_points_detach))
if self.training:
dec_out_logits.append(score_head[i](output))
if i == 0:
dec_out_bboxes.append(inter_ref_bbox)
else:
dec_out_bboxes.append(
F.sigmoid(bbox_head[i](output) + inverse_sigmoid(
ref_points)))
elif i == self.eval_idx:
dec_out_logits.append(score_head[i](output))
dec_out_bboxes.append(inter_ref_bbox)
break
ref_points = inter_ref_bbox
ref_points_detach = inter_ref_bbox.detach(
) if self.training else inter_ref_bbox
return paddle.stack(dec_out_bboxes), paddle.stack(dec_out_logits)
@register
class RTDETRTransformer(nn.Layer):
__shared__ = ['num_classes', 'hidden_dim', 'eval_size']
def __init__(self,
num_classes=80,
hidden_dim=256,
num_queries=300,
position_embed_type='sine',
backbone_feat_channels=[512, 1024, 2048],
feat_strides=[8, 16, 32],
num_levels=3,
num_decoder_points=4,
nhead=8,
num_decoder_layers=6,
dim_feedforward=1024,
dropout=0.,
activation="relu",
num_denoising=100,
label_noise_ratio=0.5,
box_noise_scale=1.0,
learnt_init_query=True,
eval_size=None,
eval_idx=-1,
eps=1e-2):
super(RTDETRTransformer, self).__init__()
assert position_embed_type in ['sine', 'learned'], \
f'ValueError: position_embed_type not supported {position_embed_type}!'
assert len(backbone_feat_channels) <= num_levels
assert len(feat_strides) == len(backbone_feat_channels)
for _ in range(num_levels - len(feat_strides)):
feat_strides.append(feat_strides[-1] * 2)
self.hidden_dim = hidden_dim
self.nhead = nhead
self.feat_strides = feat_strides
self.num_levels = num_levels
self.num_classes = num_classes
self.num_queries = num_queries
self.eps = eps
self.num_decoder_layers = num_decoder_layers
self.eval_size = eval_size
# backbone feature projection
self._build_input_proj_layer(backbone_feat_channels)
# Transformer module
decoder_layer = TransformerDecoderLayer(
hidden_dim, nhead, dim_feedforward, dropout, activation, num_levels,
num_decoder_points)
self.decoder = TransformerDecoder(hidden_dim, decoder_layer,
num_decoder_layers, eval_idx)
# denoising part
self.denoising_class_embed = nn.Embedding(
num_classes,
hidden_dim,
weight_attr=ParamAttr(initializer=nn.initializer.Normal()))
self.num_denoising = num_denoising
self.label_noise_ratio = label_noise_ratio
self.box_noise_scale = box_noise_scale
# decoder embedding
self.learnt_init_query = learnt_init_query
if learnt_init_query:
self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, num_layers=2)
# encoder head
self.enc_output = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(
hidden_dim,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0))))
self.enc_score_head = nn.Linear(hidden_dim, num_classes)
self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, num_layers=3)
# decoder head
self.dec_score_head = nn.LayerList([
nn.Linear(hidden_dim, num_classes)
for _ in range(num_decoder_layers)
])
self.dec_bbox_head = nn.LayerList([
MLP(hidden_dim, hidden_dim, 4, num_layers=3)
for _ in range(num_decoder_layers)
])
self._reset_parameters()
def _reset_parameters(self):
# class and bbox head init
bias_cls = bias_init_with_prob(0.01)
linear_init_(self.enc_score_head)
constant_(self.enc_score_head.bias, bias_cls)
constant_(self.enc_bbox_head.layers[-1].weight)
constant_(self.enc_bbox_head.layers[-1].bias)
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
linear_init_(cls_)
constant_(cls_.bias, bias_cls)
constant_(reg_.layers[-1].weight)
constant_(reg_.layers[-1].bias)
linear_init_(self.enc_output[0])
xavier_uniform_(self.enc_output[0].weight)
if self.learnt_init_query:
xavier_uniform_(self.tgt_embed.weight)
xavier_uniform_(self.query_pos_head.layers[0].weight)
xavier_uniform_(self.query_pos_head.layers[1].weight)
for l in self.input_proj:
xavier_uniform_(l[0].weight)
# init encoder output anchors and valid_mask
if self.eval_size:
self.anchors, self.valid_mask = self._generate_anchors()
@classmethod
def from_config(cls, cfg, input_shape):
return {'backbone_feat_channels': [i.channels for i in input_shape]}
def _build_input_proj_layer(self, backbone_feat_channels):
self.input_proj = nn.LayerList()
for in_channels in backbone_feat_channels:
self.input_proj.append(
nn.Sequential(
('conv', nn.Conv2D(
in_channels,
self.hidden_dim,
kernel_size=1,
bias_attr=False)), ('norm', nn.BatchNorm2D(
self.hidden_dim,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0))))))
in_channels = backbone_feat_channels[-1]
for _ in range(self.num_levels - len(backbone_feat_channels)):
self.input_proj.append(
nn.Sequential(
('conv', nn.Conv2D(
in_channels,
self.hidden_dim,
kernel_size=3,
stride=2,
padding=1,
bias_attr=False)), ('norm', nn.BatchNorm2D(
self.hidden_dim,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0))))))
in_channels = self.hidden_dim
def _get_encoder_input(self, feats):
# get projection features
proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
if self.num_levels > len(proj_feats):
len_srcs = len(proj_feats)
for i in range(len_srcs, self.num_levels):
if i == len_srcs:
proj_feats.append(self.input_proj[i](feats[-1]))
else:
proj_feats.append(self.input_proj[i](proj_feats[-1]))
# get encoder inputs
feat_flatten = []
spatial_shapes = []
level_start_index = [0, ]
for i, feat in enumerate(proj_feats):
_, _, h, w = feat.shape
# [b, c, h, w] -> [b, h*w, c]
feat_flatten.append(feat.flatten(2).transpose([0, 2, 1]))
# [num_levels, 2]
spatial_shapes.append([h, w])
# [l], start index of each level
level_start_index.append(h * w + level_start_index[-1])
# [b, l, c]
feat_flatten = paddle.concat(feat_flatten, 1)
level_start_index.pop()
return (feat_flatten, spatial_shapes, level_start_index)
def forward(self, feats, pad_mask=None, gt_meta=None):
# input projection and embedding
(memory, spatial_shapes,
level_start_index) = self._get_encoder_input(feats)
# prepare denoising training
if self.training:
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = \
get_contrastive_denoising_training_group(gt_meta,
self.num_classes,
self.num_queries,
self.denoising_class_embed.weight,
self.num_denoising,
self.label_noise_ratio,
self.box_noise_scale)
else:
denoising_class, denoising_bbox_unact, attn_mask, dn_meta = None, None, None, None
target, init_ref_points_unact, enc_topk_bboxes, enc_topk_logits = \
self._get_decoder_input(
memory, spatial_shapes, denoising_class, denoising_bbox_unact)
# decoder
out_bboxes, out_logits = self.decoder(
target,
init_ref_points_unact,
memory,
spatial_shapes,
level_start_index,
self.dec_bbox_head,
self.dec_score_head,
self.query_pos_head,
attn_mask=attn_mask)
return (out_bboxes, out_logits, enc_topk_bboxes, enc_topk_logits,
dn_meta)
def _generate_anchors(self,
spatial_shapes=None,
grid_size=0.05,
dtype="float32"):
if spatial_shapes is None:
spatial_shapes = [
[int(self.eval_size[0] / s), int(self.eval_size[1] / s)]
for s in self.feat_strides
]
anchors = []
for lvl, (h, w) in enumerate(spatial_shapes):
grid_y, grid_x = paddle.meshgrid(
paddle.arange(
end=h, dtype=dtype),
paddle.arange(
end=w, dtype=dtype))
grid_xy = paddle.stack([grid_x, grid_y], -1)
valid_WH = paddle.to_tensor([w, h]).astype(dtype)
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH
wh = paddle.ones_like(grid_xy) * grid_size * (2.0**lvl)
anchors.append(
paddle.concat([grid_xy, wh], -1).reshape([-1, h * w, 4]))
anchors = paddle.concat(anchors, 1)
valid_mask = ((anchors > self.eps) *
(anchors < 1 - self.eps)).all(-1, keepdim=True)
anchors = paddle.log(anchors / (1 - anchors))
anchors = paddle.where(valid_mask, anchors,
paddle.to_tensor(float("inf")))
return anchors, valid_mask
def _get_decoder_input(self,
memory,
spatial_shapes,
denoising_class=None,
denoising_bbox_unact=None):
bs, _, _ = memory.shape
# prepare input for decoder
if self.training or self.eval_size is None:
anchors, valid_mask = self._generate_anchors(spatial_shapes)
else:
anchors, valid_mask = self.anchors, self.valid_mask
memory = paddle.where(valid_mask, memory, paddle.to_tensor(0.))
output_memory = self.enc_output(memory)
enc_outputs_class = self.enc_score_head(output_memory)
enc_outputs_coord_unact = self.enc_bbox_head(output_memory) + anchors
_, topk_ind = paddle.topk(
enc_outputs_class.max(-1), self.num_queries, axis=1)
# extract region proposal boxes
batch_ind = paddle.arange(end=bs, dtype=topk_ind.dtype)
batch_ind = batch_ind.unsqueeze(-1).tile([1, self.num_queries])
topk_ind = paddle.stack([batch_ind, topk_ind], axis=-1)
reference_points_unact = paddle.gather_nd(enc_outputs_coord_unact,
topk_ind) # unsigmoided.
enc_topk_bboxes = F.sigmoid(reference_points_unact)
if denoising_bbox_unact is not None:
reference_points_unact = paddle.concat(
[denoising_bbox_unact, reference_points_unact], 1)
if self.training:
reference_points_unact = reference_points_unact.detach()
enc_topk_logits = paddle.gather_nd(enc_outputs_class, topk_ind)
# extract region features
if self.learnt_init_query:
target = self.tgt_embed.weight.unsqueeze(0).tile([bs, 1, 1])
else:
target = paddle.gather_nd(output_memory, topk_ind)
if self.training:
target = target.detach()
if denoising_class is not None:
target = paddle.concat([denoising_class, target], 1)
return target, reference_points_unact, enc_topk_bboxes, enc_topk_logits