This repository has been archived by the owner on Feb 9, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathpointmut_analysis_entropy.py
344 lines (287 loc) · 11.4 KB
/
pointmut_analysis_entropy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import argparse
import copy
import torch
import itertools
import pandas as pd
from Bio.PDB.Polypeptide import one_to_index, index_to_one
from Bio.PDB.PDBParser import PDBParser
from Bio.PDB.MMCIFParser import MMCIFParser
from tqdm.auto import tqdm
from rde.utils.protein.constants import num_chi_angles
from rde.utils.protein.parsers import parse_biopython_structure
from rde.utils.misc import load_config
from rde.utils.train import CrossValidation
from rde.models.rde_ddg import DDG_RDE_Network
from rde.utils.transforms import SelectAtom
def _mask_select_data(data, mask):
def _mask_select(v, mask):
if isinstance(v, torch.Tensor) and v.size(0) == mask.size(0):
return v[mask]
elif isinstance(v, list) and len(v) == mask.size(0):
return [v[i] for i, b in enumerate(mask) if b]
else:
return v
return {k: _mask_select(v, mask) for k, v in data.items()}
def _index_select_data(data, index):
def _index_select(v, index, n):
if isinstance(v, torch.Tensor) and v.size(0) == n:
return v[index]
elif isinstance(v, list) and len(v) == n:
return [v[i] for i in index]
else:
return v
return {k: _index_select(v, index, data["aa"].size(0)) for k, v in data.items()}
def _pad_data(data, patch_size=128):
def _pad_last(x, n, value=0):
if isinstance(x, torch.Tensor):
assert x.size(0) <= n
if x.size(0) == n:
return x
pad_size = [n - x.size(0)] + list(x.shape[1:])
pad = torch.full(pad_size, fill_value=value).to(x)
return torch.cat([x, pad], dim=0)
elif isinstance(x, list):
pad = [value] * (n - len(x))
return x + pad
else:
return x
ref_length = data["aa"].shape[0]
if ref_length >= patch_size:
return data
data_padded = {}
for k, v in data.items():
if len(v) == ref_length:
data_padded[k] = _pad_last(v, patch_size)
else:
data_padded[k] = v
return data_padded
def _get_Cbeta_positions(pos_atoms, mask_atoms):
"""
Args:
pos_atoms: (L, A, 3)
mask_atoms: (L, A)
"""
from rde.utils.protein.constants import BBHeavyAtom
L = pos_atoms.size(0)
pos_CA = pos_atoms[:, BBHeavyAtom.CA] # (L, 3)
if pos_atoms.size(1) < 5:
return pos_CA
pos_CB = pos_atoms[:, BBHeavyAtom.CB]
mask_CB = mask_atoms[:, BBHeavyAtom.CB, None].expand(L, 3)
return torch.where(mask_CB, pos_CB, pos_CA)
def _load_structure(pdb_path):
if pdb_path.endswith(".pdb"):
parser = PDBParser(QUIET=True)
elif pdb_path.endswith(".cif"):
parser = MMCIFParser(QUIET=True)
else:
raise ValueError("Unknown file type.")
structure = parser.get_structure(None, pdb_path)
data, seq_map = parse_biopython_structure(structure[0])
return data, seq_map
def _parse_mutations(ligand_chains, seq_map, mutations):
parsed = []
for m in mutations:
wt, ch, mt = m[0], m[1], m[-1]
if ch not in ligand_chains:
print(f"Chain {ch} not in ligand chains. Skipping mutation {m}.")
continue
seq = int(m[2:-1])
pos = (ch, seq, " ")
if pos not in seq_map:
continue
if mt == "*":
for mt_idx in range(20):
mt = index_to_one(mt_idx)
if mt == wt:
continue
parsed.append(
{
"position": pos,
"wt": wt,
"mt": mt,
}
)
else:
parsed.append(
{
"position": pos,
"wt": wt,
"mt": mt,
}
)
return parsed
def make_mutstr(mut):
return '{}{}{}{}'.format(
mut['wt'],
mut['position'][0],
mut['position'][1],
mut['mt']
)
def get(
data,
seq_map,
mutation,
receptor_group,
ligand_group,
group,
state,
patch_size=128,
):
assert group in ("ligand", "receptor", "complex")
assert state in ("mt", "wt")
data = SelectAtom('backbone+CB')(copy.deepcopy(data))
mutation_flag = torch.zeros((data["aa"].shape[0]), dtype=torch.bool)
chi_corrupt = data["chi"].clone()
mut_beta_positions = []
position = mutation["position"]
seq_idx = seq_map[position]
mutation_flag[seq_idx] = True
chi_corrupt[seq_idx] = 0.0
data["mutation_flag"] = mutation_flag
# Mutate the protein
if state == "mt":
mtype = one_to_index(mutation["mt"])
data["aa"][seq_idx] = mtype
data["chi"][seq_idx] = 0.0
data["chi_alt"][seq_idx] = 0.0
data["chi_mask"][seq_idx] = False
data["chi_mask"][seq_idx, : num_chi_angles[mtype]] = True
pos_atom = data["pos_heavyatom"][seq_idx, :5] # (5, 3)
msk_atom = data["mask_heavyatom"][seq_idx, :5] # (5,)
beta_pos = pos_atom[4] if msk_atom[4].item() else pos_atom[1]
mut_beta_positions.append(beta_pos)
mut_beta_positions = torch.stack(mut_beta_positions) # (M, 3)
data["chi_masked_flag"] = mutation_flag
data["chi_corrupt"] = chi_corrupt
# For each residue, compute the distance to the closest mutated residue
beta_pos = _get_Cbeta_positions(data["pos_heavyatom"], data["mask_heavyatom"])
pw_dist = torch.cdist(beta_pos, mut_beta_positions) # (N, M)
dist_to_mut = pw_dist.min(dim=1)[0] # (N, )
data["dist_to_mut"] = dist_to_mut
# Flags
receptor_flag = torch.BoolTensor([(c in receptor_group) for c in data["chain_id"]])
ligand_flag = torch.BoolTensor([(c in ligand_group) for c in data["chain_id"]])
data["receptor_flag"] = receptor_flag
data["ligand_flag"] = ligand_flag
# Add the information of closest residues in the receptor
rec_idx = torch.logical_and(dist_to_mut <= 8.0, receptor_flag).nonzero().flatten()
nbr_rec_flag = torch.zeros((data["aa"].shape[0]), dtype=torch.bool)
nbr_rec_flag[rec_idx] = True
data["nbr_rec_flag"] = nbr_rec_flag
# Add the information of closest residues in the ligand
lig_idx = torch.logical_and(dist_to_mut <= 8.0, ligand_flag).nonzero().flatten()
nbr_lig_flag = torch.zeros((data["aa"].shape[0]), dtype=torch.bool)
nbr_lig_flag[lig_idx] = True
data["nbr_lig_flag"] = nbr_lig_flag
# Select the chain group
if group == "ligand":
group_mask = torch.BoolTensor([(c in ligand_group) for c in data["chain_id"]])
elif group == "receptor":
group_mask = torch.BoolTensor([(c in receptor_group) for c in data["chain_id"]])
else:
group_mask = torch.ones((data["aa"].shape[0]), dtype=torch.bool)
data = _mask_select_data(data, group_mask)
# Patch or pad
patch_idx = data["dist_to_mut"].argsort()[:patch_size]
data = _index_select_data(data, patch_idx)
data = _pad_data(data, patch_size=patch_size)
# Add tags
data["group"] = group
data["state"] = state
return data
def _batchify(data, device):
batch = {}
for k, v in data.items():
if isinstance(v, torch.Tensor):
batch[k] = v.unsqueeze(0).to(device)
elif isinstance(v, list):
batch[k] = [v]
else:
batch[k] = v
return batch
def load_rdelinear_params(path, device):
def _parse_list_str(s):
return [float(x.strip()) for x in s.strip("[]").split(",")]
df = pd.read_csv(path).sort_values("grouped_spearman", ascending=False).reset_index(drop=True)
row = df.iloc[0]
params = {
"aa_coef": torch.tensor(_parse_list_str(row["aa_coef"]), dtype=torch.float32, device=device),
"aa_bias": torch.tensor(_parse_list_str(row["aa_bias"]), dtype=torch.float32, device=device),
"H_lig_ub_wt": row["H_lig_ub_wt"],
"H_lig_ub_mt": row["H_lig_ub_mt"],
"H_lig_b_wt": row["H_lig_b_wt"],
"H_lig_b_mt": row["H_lig_b_mt"],
"H_rec_ub": row["H_rec_ub"],
"H_rec_b_wt": row["H_rec_b_wt"],
"H_rec_b_mt": row["H_rec_b_mt"],
"bias": row["bias"],
}
return params
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config", type=str)
parser.add_argument("-o", "--output", type=str, default="pm_results_entropy.csv")
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--params", type=str, default="data/rdelinear_params.csv")
args = parser.parse_args()
config, _ = load_config(args.config)
print("[NOTE] This is a prototype script for entropy-based ddG prediction. It is not optimized for speed.")
data, seq_map = _load_structure(config.pdb)
mutations = _parse_mutations(
ligand_chains=config.ligand_chains,
seq_map=seq_map,
mutations=config.mutations,
)
ckpt = torch.load(config.checkpoint, map_location='cpu')
cv_mgr = CrossValidation(model_factory=DDG_RDE_Network, config=ckpt['config'], num_cvfolds=3)
cv_mgr.load_state_dict(ckpt['model'])
cv_mgr.to(args.device)
# Extract the RDE network inside the DDG_RDE_Network
model = cv_mgr.models[0].rde
params = load_rdelinear_params(args.params, device=args.device)
results = []
try:
for mutation in tqdm(mutations):
row = {}
for group, state in itertools.product(["ligand", "receptor", "complex"], ["wt", "mt"]):
mutstr = make_mutstr(mutation)
batch = _batchify(get(
data=data,
seq_map=seq_map,
mutation=mutation,
receptor_group=config.receptor_chains,
ligand_group=config.ligand_chains,
group=group,
state=state,
), args.device)
entropy_original = model.entropy(batch, n_samples=200)
ent_coef = params["aa_coef"][batch["aa"]]
ent_bias = params["aa_bias"][batch["aa"]]
entropy = (ent_coef * entropy_original + ent_bias)[0]
# Consider only the mutated residues as ligand part, consistent with the calibration procedure
entropy_ligand = entropy[batch["mutation_flag"][0]].sum().item()
entropy_receptor = entropy[batch["nbr_rec_flag"][0]].sum().item()
if group == "ligand" and state == "wt":
row["H_lig_ub_wt"] = entropy_ligand
elif group == "ligand" and state == "mt":
row["H_lig_ub_mt"] = entropy_ligand
elif group == "receptor":
row["H_rec_ub"] = entropy_receptor
elif group == "complex" and state == "wt":
row["H_lig_b_wt"] = entropy_ligand
row["H_rec_b_wt"] = entropy_receptor
elif group == "complex" and state == "mt":
row["H_lig_b_mt"] = entropy_ligand
row["H_rec_b_mt"] = entropy_receptor
row["ddG_pred"] = sum(row[k] * params[k] for k in row.keys()) + params["bias"]
results.append({"mutstr": mutstr, **row})
except KeyboardInterrupt:
print("Interrupted. Saving results.")
df = pd.DataFrame(results)
df['rank'] = df['ddG_pred'].rank() / len(df)
print(df)
df.to_csv(args.output, float_format="%.4f", index=False)
if 'interest' in config and config.interest:
print(df[df['mutstr'].isin(config.interest)])