-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
361 lines (312 loc) · 16.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import torch
from torch import nn
import torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Encoder(nn.Module):
"""
Encoder
"""
def __init__(self, encoded_image_size=14):
super(Encoder, self).__init__()
self.enc_image_size = encoded_image_size
# Pretrained ImageNet ResNet-101
# Remove linear and pool layers
resnet = torchvision.models.resnet101(pretrained=True)
modules = list(resnet.children())[:-2]
self.resnet = nn.Sequential(*modules)
# Resize image to fixed size to allow input images of variable size
self.adaptive_pool = nn.AdaptiveAvgPool2d((encoded_image_size, encoded_image_size))
self.fine_tune(fine_tune=True)
def forward(self, images):
"""
Forward propagation.
:param images: images, a tensor of dimensions (batch_size, 3, image_size, image_size)
:return: encoded images
"""
out = self.resnet(images) # (batch_size, 2048, image_size/32, image_size/32)
out = self.adaptive_pool(out) # (batch_size, 2048, encoded_image_size, encoded_image_size)
out = out.permute(0, 2, 3, 1) # (batch_size, encoded_image_size, encoded_image_size, 2048)
return out
def fine_tune(self, fine_tune=True):
"""
Allow or prevent the computation of gradients for convolutional blocks 2 through 4 of the encoder.
:param fine_tune: boolean
"""
for p in self.resnet.parameters():
p.requires_grad = False
# If fine-tuning, only fine-tune convolutional blocks 2 through 4
for c in list(self.resnet.children())[5:]:
for p in c.parameters():
p.requires_grad = fine_tune
class DecoderWithRNN(nn.Module):
def __init__(self, cfg, encoder_dim=14*14*2048):
"""
:param embed_dim: embedding size
:param decoder_dim: size of decoder's RNN
:param vocab_size: size of vocabulary
:param encoder_dim: feature size of encoded images
:param dropout: dropout
"""
super(DecoderWithRNN, self).__init__()
self.encoder_dim = encoder_dim
self.decoder_dim = cfg['decoder_dim']
self.embed_dim = cfg['embed_dim']
self.vocab_size = cfg['vocab_size']
self.dropout = cfg['dropout']
self.device = cfg['device']
############################################################################
# To Do: define some layers for decoder with RNN
# self.embedding : Embedding layer
# self.decode_step : decoding LSTMCell, using nn.LSTMCell
# self.init : linear layer to find initial input of LSTMCell
# self.bn : Batch Normalization for encoder's output
# self.fc : linear layer to transform hidden state to scores over vocabulary
# other layers you may need
# Your Code Here!
self.dropout_layer = nn.Dropout(p=self.dropout)
self.embedding = nn.Embedding(cfg['vocab_size'], cfg['embed_dim'])
self.decode_step = nn.LSTMCell(cfg['embed_dim'], cfg['decoder_dim'])
# self.decode_step = nn.LSTMCell(cfg['embed_dim'], cfg['decoder_dim'], dropout=self.dropout)
self.fc = nn.Linear(cfg['decoder_dim'], cfg['vocab_size'], bias=True)
self.init = nn.Linear(encoder_dim, cfg['decoder_dim'])
self.bn = nn.BatchNorm1d(cfg['decoder_dim'], momentum=0.01)
self.fc = nn.Linear(cfg['decoder_dim'], cfg['vocab_size'])
############################################################################
# initialize some layers with the uniform distribution
self.embedding.weight.data.uniform_(-0.1, 0.1)
self.fc.bias.data.fill_(0)
self.fc.weight.data.uniform_(-0.1, 0.1)
def load_pretrained_embeddings(self, embeddings):
"""
Loads embedding layer with pre-trained embeddings.
:param embeddings: pre-trained embeddings
"""
self.embedding.weight = nn.Parameter(embeddings)
def fine_tune_embeddings(self, fine_tune=True):
"""
Allow fine-tuning of embedding layer? (Only makes sense to not-allow if using pre-trained embeddings).
:param fine_tune: Allow?
"""
for p in self.embedding.parameters():
p.requires_grad = fine_tune
def forward(self, encoder_out, encoded_captions, caption_lengths):
"""
Forward propagation.
:param encoder_out: encoded images, a tensor of dimension (batch_size, enc_image_size, enc_image_size, encoder_dim)
:param encoded_captions: encoded captions, a tensor of dimension (batch_size, max_caption_length)
:param caption_lengths: caption lengths, a tensor of dimension (batch_size, 1)
:return: scores for vocabulary, sorted encoded captions, decode lengths, sort indices
"""
batch_size = encoder_out.size(0)
encoder_out = encoder_out.reshape(batch_size, -1)
vocab_size = self.vocab_size
# Sort input data by decreasing lengths;
caption_lengths, sort_ind = caption_lengths.squeeze(1).sort(dim=0, descending=True)
encoder_out = encoder_out[sort_ind]
encoded_captions = encoded_captions[sort_ind]
# Embedding
embeddings = self.embedding(encoded_captions) # (batch_size, max_caption_length, embed_dim)
# We won't decode at the <end> position, since we've finished generating as soon as we generate <end>
# So, decoding lengths are actual lengths - 1
decode_lengths = (caption_lengths - 1).tolist()
# Create tensors to hold word predicion scores
predictions = torch.zeros(batch_size, max(decode_lengths), vocab_size).to(self.device)
# Initialize LSTM state
init_input = self.bn(self.init(encoder_out))
h, c = self.decode_step(init_input) # (batch_size_t, decoder_dim)
############################################################################
# To Do: Implement the main decode step for forward pass
# Hint: Decode words one by one
# Teacher forcing is used.
# At each time-step, generate a new word in the decoder with the previous word embedding
# Your Code Here!
# Inside the forward() method
for t in range(max(decode_lengths)):
idx = sum([l > t for l in decode_lengths])
preds, h, c = self.one_step(
embeddings[:idx, t, :], h[:idx], c[:idx])
predictions[:idx, t, :] = preds
############################################################################
return predictions, encoded_captions, decode_lengths, sort_ind
def one_step(self, embeddings, h, c):
############################################################################
# To Do: Implement the one time decode step for forward pass
# this function can be used for test decode with beam search
# return predicted scores over vocabs: preds
# return hidden state and cell state: h, c
# Your Code Here!
# Pass the input embeddings through the LSTM cell
h, c = self.decode_step(embeddings, (h, c))
# Compute the scores over the vocabulary
preds = self.fc(self.dropout_layer(h))
############################################################################
return preds, h, c
class Attention(nn.Module):
"""
Attention Network.
"""
def __init__(self, encoder_dim, decoder_dim, attention_dim):
"""
:param encoder_dim: feature size of encoded images
:param decoder_dim: size of decoder's RNN
:param attention_dim: size of the attention network
"""
super(Attention, self).__init__()
#################################################################
# To Do: you need to define some layers for attention module
# Hint: Firstly, define linear layers to transform encoded tensor
# and decoder's output tensor to attention dim; Secondly, define
# attention linear layer to calculate values to be softmax-ed;
# Your Code Here!
self.encoder_att = nn.Linear(encoder_dim, attention_dim)
self.decoder_att = nn.Linear(decoder_dim, attention_dim)
self.att = nn.Linear(attention_dim, 1)
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1)
#################################################################
def forward(self, encoder_out, decoder_hidden):
"""
Forward pass.
:param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
:param decoder_hidden: previous decoder output, a tensor of dimension (batch_size, decoder_dim)
:return: attention weighted encoding, weights
"""
#################################################################
# To Do: Implement the forward pass for attention module
# Hint: follow the equation
# "e = f_att(encoder_out, decoder_hidden)"
# "alpha = softmax(e)"
# "z = alpha * encoder_out"
# Your Code Here!
att1 = self.encoder_att(encoder_out) # (batch_size, num_pixels, attention_dim)
att2 = self.decoder_att(decoder_hidden) # (batch_size, attention_dim)
att = self.att(self.relu(att1 + att2.unsqueeze(1))).squeeze(2) # (batch_size, num_pixels)
alpha = self.softmax(att) # (batch_size, num_pixels)
z = (encoder_out * alpha.unsqueeze(2)).sum(dim=1) # (batch_size, encoder_dim)
#################################################################
return z, alpha
class DecoderWithAttention(nn.Module):
"""
Decoder.
"""
def __init__(self, cfg, encoder_dim=2048):
"""
:param attention_dim: size of attention network
:param embed_dim: embedding size
:param decoder_dim: size of decoder's RNN
:param vocab_size: size of vocabulary
:param encoder_dim: feature size of encoded images
:param dropout: dropout
"""
super(DecoderWithAttention, self).__init__()
self.encoder_dim = encoder_dim
self.decoder_dim = cfg['decoder_dim']
self.attention_dim = cfg['attention_dim']
self.embed_dim = cfg['embed_dim']
self.vocab_size = cfg['vocab_size']
self.dropout = cfg['dropout']
self.device = cfg['device']
############################################################################
# To Do: define some layers for decoder with attention
# self.attention : Attention layer
# self.embedding : Embedding layer
# self.decode_step : decoding LSTMCell, using nn.LSTMCell
# self.init_h : linear layer to find initial hidden state of LSTMCell
# self.init_c : linear layer to find initial cell state of LSTMCell
# self.beta : linear layer to create a sigmoid-activated gate
# self.fc : linear layer to transform hidden state to scores over vocabulary
# other layers you may need
# Your Code Here!
self.attention = Attention(self.encoder_dim, self.decoder_dim, self.attention_dim)
self.embedding = nn.Embedding(cfg['vocab_size'], cfg['embed_dim'])
self.decode_step = nn.LSTMCell(cfg['embed_dim'] + self.encoder_dim, cfg['decoder_dim'])
self.init_h = nn.Linear(self.encoder_dim, cfg['decoder_dim'])
self.init_c = nn.Linear(self.encoder_dim, cfg['decoder_dim'])
self.beta = nn.Linear(self.decoder_dim, 1)
self.fc = nn.Linear(cfg['decoder_dim'], cfg['vocab_size'])
self.dropout_layer = nn.Dropout(p=self.dropout)
self.init = nn.Linear(encoder_dim, cfg['decoder_dim'])
self.bn = nn.BatchNorm1d(cfg['decoder_dim'], momentum=0.01)
############################################################################
# initialize some layers with the uniform distribution
self.embedding.weight.data.uniform_(-0.1, 0.1)
self.fc.bias.data.fill_(0)
self.fc.weight.data.uniform_(-0.1, 0.1)
def load_pretrained_embeddings(self, embeddings):
"""
Loads embedding layer with pre-trained embeddings.
:param embeddings: pre-trained embeddings
"""
self.embedding.weight = nn.Parameter(embeddings)
def fine_tune_embeddings(self, fine_tune=True):
"""
Allow fine-tuning of embedding layer? (Only makes sense to not-allow if using pre-trained embeddings).
:param fine_tune: Allow?
"""
for p in self.embedding.parameters():
p.requires_grad = fine_tune
def forward(self, encoder_out, encoded_captions, caption_lengths):
"""
Forward propagation.
:param encoder_out: encoded images, a tensor of dimension (batch_size, enc_image_size, enc_image_size, encoder_dim)
:param encoded_captions: encoded captions, a tensor of dimension (batch_size, max_caption_length)
:param caption_lengths: caption lengths, a tensor of dimension (batch_size, 1)
:return: scores for vocabulary, sorted encoded captions, decode lengths, weights, sort indices
"""
batch_size = encoder_out.size(0)
encoder_dim = encoder_out.size(-1)
vocab_size = self.vocab_size
# Flatten image
encoder_out = encoder_out.view(batch_size, -1, encoder_dim) # (batch_size, num_pixels, encoder_dim)
num_pixels = encoder_out.size(1)
# Sort input data by decreasing lengths;
caption_lengths, sort_ind = caption_lengths.squeeze(1).sort(dim=0, descending=True)
encoder_out = encoder_out[sort_ind]
encoded_captions = encoded_captions[sort_ind]
# Embedding
embeddings = self.embedding(encoded_captions) # (batch_size, max_caption_length, embed_dim)
# We won't decode at the <end> position, since we've finished generating as soon as we generate <end>
# So, decoding lengths are actual lengths - 1
decode_lengths = (caption_lengths - 1).tolist()
# Create tensors to hold word predicion scores and alphas
predictions = torch.zeros(batch_size, max(decode_lengths), vocab_size).to(self.device)
alphas = torch.zeros(batch_size, max(decode_lengths), num_pixels).to(self.device)
# Initialize LSTM state
mean_encoder_out = encoder_out.mean(dim=1)
h = self.init_h(mean_encoder_out) # (batch_size, decoder_dim)
c = self.init_c(mean_encoder_out)
############################################################################
# To Do: Implement the main decode step for forward pass
# Hint: Decode words one by one
# Teacher forcing is used.
# At each time-step, decode by attention-weighing the encoder's output based
# on the decoder's previous hidden state output
# then generate a new word in the decoder with the previous word and the attention weighted encoding
# Your Code Here!
for t in range(max(decode_lengths)):
batch_size_t = sum([l > t for l in decode_lengths])
attention_weighted_encoding, alpha = self.attention(encoder_out[:batch_size_t], h[:batch_size_t])
gate = self.beta(h[:batch_size_t])
attention_weighted_encoding = gate * attention_weighted_encoding
decoder_input = torch.cat([embeddings[:batch_size_t, t, :], attention_weighted_encoding], dim=1)
h, c = self.decode_step(decoder_input, (h[:batch_size_t], c[:batch_size_t]))
preds = self.fc(self.dropout_layer(h))
predictions[:batch_size_t, t, :] = preds
############################################################################
return predictions, encoded_captions, decode_lengths, alphas, sort_ind
def one_step(self, embeddings, encoder_out, h, c):
############################################################################
# To Do: Implement the one time decode step for forward pass
# this function can be used for test decode with beam search
# return predicted scores over vocabs: preds
# return attention weight: alpha
# return hidden state and cell state: h, c
# Your Code Here!
attention_weighted_encoding, alpha = self.attention(encoder_out, h)
gate = self.beta(h)
attention_weighted_encoding = gate * attention_weighted_encoding
decoder_input = torch.cat([embeddings, attention_weighted_encoding], dim=1)
h, c = self.decode_step(decoder_input, (h, c))
preds = self.fc(self.dropout_layer(h))
############################################################################
return preds, alpha, h, c