Skip to content

Latest commit

 

History

History
6 lines (3 loc) · 1.79 KB

2408.14823.md

File metadata and controls

6 lines (3 loc) · 1.79 KB

LapisGS: Layered Progressive 3D Gaussian Splatting for Adaptive Streaming

The rise of Extended Reality (XR) requires efficient streaming of 3D online worlds, challenging current 3DGS representations to adapt to bandwidth-constrained environments. This paper proposes LapisGS, a layered 3DGS that supports adaptive streaming and progressive rendering. Our method constructs a layered structure for cumulative representation, incorporates dynamic opacity optimization to maintain visual fidelity, and utilizes occupancy maps to efficiently manage Gaussian splats. This proposed model offers a progressive representation supporting a continuous rendering quality adapted for bandwidth-aware streaming. Extensive experiments validate the effectiveness of our approach in balancing visual fidelity with the compactness of the model, with up to 50.71% improvement in SSIM, 286.53% improvement in LPIPS, and 318.41% reduction in model size, and shows its potential for bandwidth-adapted 3D streaming and rendering applications.

随着扩展现实(XR)的兴起,需要高效地流式传输3D在线世界,这对当前的3D高斯斑点(3DGS)表示在带宽受限环境下的适应性提出了挑战。本文提出了LapisGS,这是一种支持自适应流式传输和渐进渲染的分层3DGS方法。我们的方法构建了一个累积表示的分层结构,结合了动态不透明度优化以保持视觉保真度,并利用占用图来高效管理高斯斑点。该模型提供了一种渐进式表示,支持根据带宽需求自适应的连续渲染质量。大量实验验证了我们的方法在平衡视觉保真度与模型紧凑性方面的有效性,SSIM提高了最高50.71%,LPIPS提高了286.53%,模型大小减少了318.41%,并展示了其在带宽适配的3D流媒体和渲染应用中的潜力。