-
Notifications
You must be signed in to change notification settings - Fork 11
/
predict.py
311 lines (280 loc) · 12.5 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
import os
import re
import time
import torch
import subprocess
import numpy as np
from PIL import Image
from typing import List
from diffusers import (
FluxPipeline,
FluxImg2ImgPipeline
)
from torchvision import transforms
from weights import WeightsDownloadCache
from transformers import CLIPImageProcessor
from lora_loading_patch import load_lora_into_transformer
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker
)
MAX_IMAGE_SIZE = 1440
MODEL_CACHE = "FLUX.1-dev"
SAFETY_CACHE = "safety-cache"
FEATURE_EXTRACTOR = "/src/feature-extractor"
SAFETY_URL = "https://weights.replicate.delivery/default/sdxl/safety-1.0.tar"
MODEL_URL = "https://weights.replicate.delivery/default/black-forest-labs/FLUX.1-dev/files.tar"
ASPECT_RATIOS = {
"1:1": (1024, 1024),
"16:9": (1344, 768),
"21:9": (1536, 640),
"3:2": (1216, 832),
"2:3": (832, 1216),
"4:5": (896, 1088),
"5:4": (1088, 896),
"3:4": (896, 1152),
"4:3": (1152, 896),
"9:16": (768, 1344),
"9:21": (640, 1536),
}
def download_weights(url, dest, file=False):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
if not file:
subprocess.check_call(["pget", "-xf", url, dest], close_fds=False)
else:
subprocess.check_call(["pget", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
start = time.time()
self.weights_cache = WeightsDownloadCache()
self.last_loaded_lora = None
print("Loading safety checker...")
if not os.path.exists(SAFETY_CACHE):
download_weights(SAFETY_URL, SAFETY_CACHE)
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
SAFETY_CACHE, torch_dtype=torch.float16
).to("cuda")
self.feature_extractor = CLIPImageProcessor.from_pretrained(FEATURE_EXTRACTOR)
print("Loading Flux txt2img Pipeline")
if not os.path.exists(MODEL_CACHE):
download_weights(MODEL_URL, '.')
self.txt2img_pipe = FluxPipeline.from_pretrained(
MODEL_CACHE,
torch_dtype=torch.bfloat16,
cache_dir=MODEL_CACHE
).to("cuda")
self.txt2img_pipe.__class__.load_lora_into_transformer = classmethod(
load_lora_into_transformer
)
print("Loading Flux img2img pipeline")
self.img2img_pipe = FluxImg2ImgPipeline(
transformer=self.txt2img_pipe.transformer,
scheduler=self.txt2img_pipe.scheduler,
vae=self.txt2img_pipe.vae,
text_encoder=self.txt2img_pipe.text_encoder,
text_encoder_2=self.txt2img_pipe.text_encoder_2,
tokenizer=self.txt2img_pipe.tokenizer,
tokenizer_2=self.txt2img_pipe.tokenizer_2,
).to("cuda")
self.img2img_pipe.__class__.load_lora_into_transformer = classmethod(
load_lora_into_transformer
)
print("setup took: ", time.time() - start)
@torch.amp.autocast('cuda')
def run_safety_checker(self, image):
safety_checker_input = self.feature_extractor(image, return_tensors="pt").to("cuda")
np_image = [np.array(val) for val in image]
image, has_nsfw_concept = self.safety_checker(
images=np_image,
clip_input=safety_checker_input.pixel_values.to(torch.float16),
)
return image, has_nsfw_concept
def aspect_ratio_to_width_height(self, aspect_ratio: str) -> tuple[int, int]:
return ASPECT_RATIOS[aspect_ratio]
def get_image(self, image: str):
image = Image.open(image).convert("RGB")
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Lambda(lambda x: 2.0 * x - 1.0),
]
)
img: torch.Tensor = transform(image)
return img[None, ...]
@staticmethod
def make_multiple_of_16(n):
return ((n + 15) // 16) * 16
@torch.inference_mode()
def predict(
self,
prompt: str = Input(description="Prompt for generated image"),
aspect_ratio: str = Input(
description="Aspect ratio for the generated image",
choices=list(ASPECT_RATIOS.keys()),
default="1:1"
),
image: Path = Input(
description="Input image for image to image mode. The aspect ratio of your output will match this image",
default=None,
),
prompt_strength: float = Input(
description="Prompt strength (or denoising strength) when using image to image. 1.0 corresponds to full destruction of information in image.",
ge=0,le=1,default=0.8,
),
num_outputs: int = Input(
description="Number of images to output.",
ge=1,
le=4,
default=1,
),
num_inference_steps: int = Input(
description="Number of inference steps",
ge=1,le=50,default=28,
),
guidance_scale: float = Input(
description="Guidance scale for the diffusion process",
ge=0,le=10,default=3.5,
),
seed: int = Input(description="Random seed. Set for reproducible generation", default=None),
output_format: str = Input(
description="Format of the output images",
choices=["webp", "jpg", "png"],
default="webp",
),
output_quality: int = Input(
description="Quality when saving the output images, from 0 to 100. 100 is best quality, 0 is lowest quality. Not relevant for .png outputs",
default=80,
ge=0,
le=100,
),
hf_lora: str = Input(
description="HF, Replicate, CivitAI, or URL to a LoRA. Ex: alvdansen/frosting_lane_flux",
default=None,
),
lora_scale: float = Input(
description="Scale for the LoRA weights",
ge=0,le=1, default=0.8,
),
disable_safety_checker: bool = Input(
description="Disable safety checker for generated images. This feature is only available through the API. See [https://replicate.com/docs/how-does-replicate-work#safety](https://replicate.com/docs/how-does-replicate-work#safety)",
default=False,
),
) -> List[Path]:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
width, height = self.aspect_ratio_to_width_height(aspect_ratio)
max_sequence_length=512
flux_kwargs = {"width": width, "height": height}
print(f"Prompt: {prompt}")
device = self.txt2img_pipe.device
if image:
pipe = self.img2img_pipe
print("img2img mode")
init_image = self.get_image(image)
width = init_image.shape[-1]
height = init_image.shape[-2]
print(f"Input image size: {width}x{height}")
# Calculate the scaling factor if the image exceeds MAX_IMAGE_SIZE
scale = min(MAX_IMAGE_SIZE / width, MAX_IMAGE_SIZE / height, 1)
if scale < 1:
width = int(width * scale)
height = int(height * scale)
print(f"Scaling image down to {width}x{height}")
# Round image width and height to nearest multiple of 16
width = self.make_multiple_of_16(width)
height = self.make_multiple_of_16(height)
print(f"Input image size set to: {width}x{height}")
# Resize
init_image = init_image.to(device)
init_image = torch.nn.functional.interpolate(init_image, (height, width))
init_image = init_image.to(torch.bfloat16)
# Set params
flux_kwargs["image"] = init_image
flux_kwargs["strength"] = prompt_strength
else:
print("txt2img mode")
pipe = self.txt2img_pipe
if hf_lora:
flux_kwargs["joint_attention_kwargs"] = {"scale": lora_scale}
t1 = time.time()
# check if extra_lora is new
if hf_lora != self.last_loaded_lora:
pipe.unload_lora_weights()
if re.match(r"^[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+$", hf_lora):
print(f"Downloading LoRA weights from - HF path: {hf_lora}")
pipe.load_lora_weights(hf_lora)
# Check for Replicate tar file
elif re.match(r"^https?://replicate.delivery/[a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+/trained_model.tar", hf_lora):
print(f"Downloading LoRA weights from - Replicate URL: {hf_lora}")
local_weights_cache = self.weights_cache.ensure(hf_lora)
lora_path = os.path.join(local_weights_cache, "output/flux_train_replicate/lora.safetensors")
pipe.load_lora_weights(lora_path)
# Check for Huggingface URL
elif re.match(r"^https?://huggingface.co", hf_lora):
print(f"Downloading LoRA weights from - HF URL: {hf_lora}")
huggingface_slug = re.search(r"^https?://huggingface.co/([a-zA-Z0-9_-]+/[a-zA-Z0-9_-]+)", hf_lora).group(1)
weight_name = hf_lora.split('/')[-1]
print(f"HuggingFace slug from URL: {huggingface_slug}, weight name: {weight_name}")
pipe.load_lora_weights(huggingface_slug, weight_name=weight_name)
# Check for Civitai URL
elif re.match(r"^https?://civitai.com/api/download/models/[0-9]+\?type=Model&format=SafeTensor", hf_lora):
# split url to get first part of the url, everythin before '?type'
civitai_slug = hf_lora.split('?type')[0]
print(f"Downloading LoRA weights from - Civitai URL: {civitai_slug}")
lora_path = self.weights_cache.ensure(hf_lora, file=True)
pipe.load_lora_weights(lora_path)
# Check for URL to a .safetensors file
elif hf_lora.endswith('.safetensors'):
print(f"Downloading LoRA weights from - safetensor URL: {hf_lora}")
try:
lora_path = self.weights_cache.ensure(hf_lora, file=True)
except Exception as e:
raise Exception(f"Error downloading LoRA weights from URL: {e}")
pipe.load_lora_weights(lora_path)
else:
raise Exception(f"Invalid lora, must be either a: HuggingFace path, Replicate model.tar URL, or a URL to a .safetensors file: {hf_lora}")
# Move the entire pipeline to GPU after loading LoRA weights
pipe = pipe.to("cuda")
self.last_loaded_lora = hf_lora
t2 = time.time()
print(f"Loading LoRA took: {t2 - t1:.2f} seconds")
else:
flux_kwargs["joint_attention_kwargs"] = None
pipe.unload_lora_weights()
self.last_loaded_lora = None
# Ensure the pipeline is on GPU
pipe = pipe.to("cuda")
generator = torch.Generator("cuda").manual_seed(seed)
common_args = {
"prompt": [prompt] * num_outputs,
"guidance_scale": guidance_scale,
"generator": generator,
"num_inference_steps": num_inference_steps,
"max_sequence_length": max_sequence_length,
"output_type": "pil"
}
output = pipe(**common_args, **flux_kwargs)
if not disable_safety_checker:
_, has_nsfw_content = self.run_safety_checker(output.images)
output_paths = []
for i, image in enumerate(output.images):
if not disable_safety_checker and has_nsfw_content[i]:
print(f"NSFW content detected in image {i}")
continue
output_path = f"/tmp/out-{i}.{output_format}"
if output_format != 'png':
image.save(output_path, quality=output_quality, optimize=True)
else:
image.save(output_path)
output_paths.append(Path(output_path))
if len(output_paths) == 0:
raise Exception("NSFW content detected. Try running it again, or try a different prompt.")
return output_paths