-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathssd_detection.py
116 lines (96 loc) · 3.63 KB
/
ssd_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (10, 10)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# change this to your caffe root dir
caffe_root = '/home/chenqi-didi/Documents/work/caffe'
import os
import sys
sys.path.insert(0, caffe_root + '/python')
import caffe
from google.protobuf import text_format
from caffe.proto import caffe_pb2
import cv2
caffe.set_device(0)
caffe.set_mode_gpu()
print('Check Caffe OK!')
# load label map file
labelmap_file = 'data/labelmap_kitti.prototxt'
file = open(labelmap_file, 'r')
labelmap = caffe_pb2.LabelMap()
a = text_format.Merge(str(file.read()), labelmap)
def get_labelname(labelmap, labels):
num_labels = len(labelmap.item)
labelnames = []
if type(labels) is not list:
labels = [labels]
for label in labels:
found = False
for i in range(0, num_labels):
if label == labelmap.item[i].label:
found = True
labelnames.append(labelmap.item[i].display_name)
break
assert found == True
return labelnames
# load model deploy prototxt and caffemodel weights
model_def = 'models/VGGNet/KITTI/SSD_414x125/deploy.prototxt'
model_weights = 'models/VGGNet/KITTI/SSD_414x125/VGG_KITTI_SSD_414x125_iter_120000.caffemodel'
net = caffe.Net(model_def,
model_weights,
caffe.TEST)
# input preprocessing: 'data' is the name of the input blob == net.inputs[0]
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2, 0, 1))
transformer.set_mean('data', np.array([104, 117, 123]))
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2, 1, 0))
image_resize_width = 414
image_resize_height = 125
net.blobs['data'].reshape(1, 3, image_resize_height, image_resize_width)
detect_image = 'data/test2.jpg'
image = caffe.io.load_image(detect_image)
transformed_image = transformer.preprocess('data', image)
net.blobs['data'].data[...] = transformed_image
detections = net.forward()['detection_out']
# Parse the outputs.
det_label = detections[0, 0, :, 1]
det_conf = detections[0, 0, :, 2]
det_xmin = detections[0, 0, :, 3]
det_ymin = detections[0, 0, :, 4]
det_xmax = detections[0, 0, :, 5]
det_ymax = detections[0, 0, :, 6]
print('det_label', det_label)
print('det_conf', det_conf)
print('det_xmin', det_xmin)
print('det_ymin', det_ymin)
print('det_xmax', det_xmax)
print('det_ymax', det_ymax)
# Get detections with confidence higher than 0.6.
top_indices = [i for i, conf in enumerate(det_conf) if conf >= 0.3]
top_conf = det_conf[top_indices]
top_label_indices = det_label[top_indices].tolist()
top_labels = get_labelname(labelmap, top_label_indices)
top_xmin = det_xmin[top_indices]
top_ymin = det_ymin[top_indices]
top_xmax = det_xmax[top_indices]
top_ymax = det_ymax[top_indices]
print('top_label', top_labels)
print('top_conf', top_conf)
print('top_xmin', top_xmin)
print('top_ymin', top_ymin)
print('top_xmax', top_xmax)
print('top_ymax', top_ymax)
image_mat = cv2.imread(detect_image, cv2.IMREAD_COLOR)
image_h = image_mat.shape[0]
image_w = image_mat.shape[1]
for i in range(0, top_conf.shape[0]):
cv2.rectangle(image_mat, (int(round(top_xmin[i]*image_w)), int(round(top_ymin[i]*image_h))),
(int(round(top_xmax[i]*image_w)), int(round(top_ymax[i]*image_h))), (155, 25, 25), 2)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(image_mat, top_labels[i], (int(round(top_xmin[i]*image_w)), int(round(top_ymin[i]*image_h))),
font, 1, (0, 0, 0), 2, cv2.LINE_AA)
cv2.imshow('image', image_mat)
cv2.waitKey(0)
cv2.destroyAllWindows()