-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCLLDA.py
executable file
·525 lines (454 loc) · 22.5 KB
/
CLLDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import numpy as np
try:
from scipy.stats import mode
except ImportError:
def mode(a, axis=0):
scores = np.unique(np.ravel(a)) # get ALL unique values
testshape = list(a.shape)
testshape[axis] = 1
oldmostfreq = np.zeros(testshape)
oldcounts = np.zeros(testshape)
for score in scores:
template = (a == score)
counts = np.expand_dims(np.sum(template, axis), axis)
mostfrequent = np.where(counts > oldcounts, score, oldmostfreq)
oldcounts = np.maximum(counts, oldcounts)
oldmostfreq = mostfrequent
return mostfrequent, oldcounts
import multiprocessing as mp
from time import time
from copy import deepcopy
from crowd_labeling.logratio_transformations import \
centered_log_ratio_transform as clr, \
isometric_log_ratio_transform as ilr, \
additive_log_ratio_transform as alr, \
make_projection_matrix as mpm
class CLLDA:
"""
The :class: CLLDA is a python implementation of Crowd Labeling Latent Dirichlet Allocation.
This algorithm processes crowd labeling (aka crowd consensus) data where workers label instances
as pertaining to one or more classes. Allows for calculating resulting label estimates and
covariances in multiple log-ratio transformed spaces.
"""
def __init__(self, votes, workers, instances, vote_ids=None, worker_ids=None, instance_ids=None,
worker_prior=None, instance_prior=None, transform=None,
num_epochs=1000, burn_in=200, updateable=True, save_samples=False, seed=None):
"""
Initializes settings for the model and automatically calls the inference function.
:param votes: List of vote values.
:param workers: List of uses who submitted :param votes.
:param instances: List of instances to which the :param votes pertain.
:param vote_ids: (optional) List of vote ids. If provided, :param votes should be a list of integers.
:param instance_ids: (optional) List of instance ids. If provided, :param instances should be a list of integers.
:param worker_ids: (optional) List of worker ids. If provided, :param workers should be a list of integers.
:param worker_prior: (optional) Matrix prior for worker skill (pseudovotes).
:param instance_prior: (optional) List of class priors (pseudovotes)
:param transform: log-ratio transform to use.
:param num_epochs: number of epochs to run for.
:param burn_in: number of epochs to ignore for convergence of the Gibbs chain.
:param updateable: If True, will save vote-classes between runs at the expense of memory.
:param save_samples: option to save vote-classes after each epoch (very memory intensive).
:param seed: seed for the random number generator if reproducibility is desired.
"""
# set random seed
if seed is None:
seed = np.random.randint(int(1e8))
self.rng = np.random.RandomState(seed=seed)
# data info and priors
self.V = len(votes)
self.U = len(np.unique(workers))
self.I = len(np.unique(instances))
if worker_prior is not None:
self.worker_prior = np.array(worker_prior)
if self.worker_prior.ndim == 2:
self.worker_prior = np.tile(self.worker_prior[np.newaxis, :, :], [self.U, 1, 1])
self.C = self.worker_prior.shape[1]
self.R = self.worker_prior.shape[2]
else:
if vote_ids is not None:
self.C = len(vote_ids)
self.R = self.C
else:
self.R = len(np.unique(votes))
self.C = self.R
self.worker_prior = (np.eye(self.R) + np.ones((self.R, self.R)) / self.R) * 3
self.worker_prior = np.tile(self.worker_prior[np.newaxis, :, :], [self.U, 1, 1])
if instance_prior is None:
self.instance_prior = np.ones(self.C) / self.C / 4
else:
self.instance_prior = instance_prior
# determine vote IDs
if vote_ids is None:
self.vote_ids = np.unique(votes)
vote_dict = {y: x for x, y in enumerate(self.vote_ids)}
votes = np.array([vote_dict[x] for x in votes])
else:
self.vote_ids = vote_ids
# determine instance IDs
if instance_ids is None:
self.instance_ids = np.unique(instances)
instance_dict = {y: x for x, y in enumerate(self.instance_ids)}
instances = np.array([instance_dict[x] for x in instances])
else:
self.instance_ids = instance_ids
# determine worker IDs
if worker_ids is None:
self.worker_ids = np.unique(workers)
worker_dict = {y: x for x, y in enumerate(self.worker_ids)}
workers = np.array([worker_dict[x] for x in workers])
else:
self.worker_ids = worker_ids
# cl_transform info
if not isinstance(transform, str) and hasattr(transform, '__iter__'):
self.transform = tuple(transform)
else:
self.transform = (transform,)
# Gibbs sampling parameters
self.num_epochs = num_epochs
self.burn_in = burn_in
self.num_samples = num_epochs - burn_in
# info to save
self.LL = np.nan * np.ones(self.num_epochs)
self.worker_mats = np.zeros((self.U, self.C, self.R))
self.labels, self.labels_cov = list(), list()
for transform in self.transform:
if transform in (None, 'none', 'clr'):
self.labels.append(np.zeros((self.I, self.C)))
self.labels_cov.append(np.zeros((self.I, self.C, self.C)))
elif transform in ('alr', 'ilr'):
self.labels.append(np.zeros((self.I, self.C - 1)))
self.labels_cov.append(np.zeros((self.I, self.C - 1, self.C - 1)))
else:
raise Exception('Unknown transform!')
if save_samples:
self.samples = np.zeros((self.num_epochs - self.burn_in, self.I, self.C - 1))
self.updateable = updateable
self.vote_classes = None
# estimate label means and covariances using cllda
self.cllda(votes, workers, instances)
# clean up
if not self.updateable:
self.vote_classes = None
else:
self.votes = votes
self.instances = instances
self.workers = workers
# CLLDA optimization using Gibbs sampling
def cllda(self, votes, workers, instances, starting_epoch=0):
"""
Performs inference on the :class: CLLDA model.
:param votes: List of vote values.
:param workers: List of workers who submitted :param votes.
:param instances: List of instances to which the :param votes pertain.
:param starting_epoch: How many epochs have already been incorporated in the averages.
"""
# precalculate
worker_prior_sum = self.worker_prior.sum(axis=2)
instance_prior_sum = self.instance_prior.sum()
# initial estimates
if self.vote_classes is None:
if self.C == self.R:
self.vote_classes = votes.copy()
else:
self.vote_classes = self.rng.randint(0, self.C, self.V)
# calculate vote weights
temp = np.vstack((workers, instances)).T
temp = np.ascontiguousarray(temp).view(np.dtype((np.void, temp.dtype.itemsize * temp.shape[1])))
_, unique_counts = np.unique(temp, return_counts=True)
weights = 1. / unique_counts[instances] # type: np.ndarray
# initial counts
counts_across_images = np.zeros(shape=(self.U, self.C, self.R))
counts_across_workers_and_votes = np.zeros(shape=(self.I, self.C))
for it_v in range(self.V):
counts_across_images[workers[it_v], self.vote_classes[it_v], votes[it_v]] += weights[it_v]
counts_across_workers_and_votes[instances[it_v], self.vote_classes[it_v]] += weights[it_v]
counts_across_images_and_votes = counts_across_images.sum(axis=2)
# set cl_transform
transform = list()
for tfm in self.transform:
if tfm in (None, 'none'):
transform.append(self.identity)
elif tfm == 'clr':
transform.append(clr)
elif tfm == 'alr':
transform.append(alr)
elif tfm == 'ilr':
transform.append(lambda comp: ilr(comp, mpm(self.C)))
# LDA functions
def get_data_like():
like = np.zeros(self.V)
for it_v in range(self.V):
i = instances[it_v]
k = self.vote_classes[it_v]
u = workers[it_v]
v = votes[it_v]
w = weights[it_v] # type: np.ndarray
like[it_v] = (counts_across_workers_and_votes[i, k] - w + self.instance_prior[k]) \
* (counts_across_images[u, k, v] - w + self.worker_prior[u, k, v]) \
/ (counts_across_images_and_votes[u, k] - w + worker_prior_sum[u, k])
return np.log(like).sum()
def get_label_prob():
like = (counts_across_workers_and_votes[i, :] + self.instance_prior[:]) \
* (counts_across_images[u, :, v] + self.worker_prior[u, :, v]) \
/ (counts_across_images_and_votes[u, :] + worker_prior_sum[u, :])
return like / like.sum()
def update_labels():
# create update
numerator = counts_across_workers_and_votes + self.instance_prior
denominator = counts_across_workers_and_votes.sum(axis=1) + instance_prior_sum
update = numerator / denominator[:, np.newaxis]
for it, tfm in enumerate(transform):
tfmupdate = tfm(update)
if hasattr(self, 'samples'):
self.samples[ep - self.burn_in, :, :] = tfmupdate
# update labels
delta = (tfmupdate - self.labels[it]) / (ep - self.burn_in + 1)
self.labels[it] += delta
# update labels_M2
delta_cov = delta[:, :, np.newaxis] * delta[:, :, np.newaxis].transpose(0, 2, 1)
self.labels_cov[it] += (ep - self.burn_in) * delta_cov - self.labels_cov[it] / (ep - self.burn_in + 1)
def update_worker_mats():
# create update
numerator = counts_across_images + self.worker_prior
denominator = counts_across_images.sum(axis=2) + worker_prior_sum
update = numerator / denominator[:, :, np.newaxis]
# update labels
delta = (update - self.worker_mats) / (ep - self.burn_in + 1)
self.worker_mats += delta
# CLLDA
start = time()
for ep in range(starting_epoch, starting_epoch + self.num_epochs):
# begin epoch
print('starting epoch ' + str(ep + 1))
if ep > starting_epoch:
time_to_go = (time() - start) * (self.num_epochs - ep) / ep
if time_to_go >= 3600:
print('Estimated time to finish: %.2f hours' % (time_to_go / 3600,))
elif time_to_go >= 60:
print('Estimated time to finish: %.1f minutes' % (time_to_go / 60,))
else:
print('Estimated time to finish: %.1f seconds' % (time_to_go,))
ep_start = time()
# gibbs sampling
for it_v in self.rng.permutation(self.V).astype(np.int64):
# get correct indices
i = instances[it_v]
k = self.vote_classes[it_v]
u = workers[it_v]
v = votes[it_v]
w = weights[it_v]
# decrement counts
counts_across_images[u, k, v] -= w
counts_across_workers_and_votes[i, k] -= w
counts_across_images_and_votes[u, k] -= w
# calculate probabilities of labels for this vote
probs = get_label_prob()
# sample new label
k = self.rng.multinomial(1, probs).argmax()
self.vote_classes[it_v] = k
# increment counts
counts_across_images[u, k, v] += w
counts_across_workers_and_votes[i, k] += w
counts_across_images_and_votes[u, k] += w
# save information
self.LL[ep] = get_data_like()
if ep >= self.burn_in + starting_epoch:
update_labels()
update_worker_mats()
# print epoch LL and duration
print('Epoch completed in %.1f seconds' % (time() - ep_start,))
print('LL: %.6f' % (self.LL[ep]))
# adjust label covariances
self.labels_cov = [x * self.num_samples / (self.num_samples - 1.) for x in self.labels_cov]
time_total = time() - start
if time_total >= 3600:
print('CLLDA completed in %.2f hours' % (time_total / 3600,))
elif time_total >= 60:
print('CLLDA completed in %.1f minutes' % (time_total / 60,))
else:
print('CLLDA completed in %.1f seconds' % (time_total,))
#
def update(self, votes, workers, instances, vote_ids=None, instance_ids=None, worker_ids=None, worker_prior=None,
num_epochs=1000, burn_in=200):
# check that this is updateble
assert self.updateable, 'This model is not updateable, presumable to conserve memory.'
# determine IDs
# for votes
old_vote_ids = self.vote_ids.copy() # type: np.ndarray
if vote_ids is None:
self.vote_ids = np.unique(votes)
vote_dict = {y: x for x, y in enumerate(self.vote_ids)}
votes = np.array([vote_dict[x] for x in votes])
else:
self.vote_ids = vote_ids
# for instances
old_instance_ids = self.instance_ids.copy() # type: np.ndarray
if instance_ids is None:
self.instance_ids = np.unique(instances)
instance_dict = {y: x for x, y in enumerate(self.instance_ids)}
instances = np.array([instance_dict[x] for x in instances])
else:
self.instance_ids = instance_ids
# for workers
old_worker_ids = self.worker_ids.copy() # type: np.ndarray
if worker_ids is None:
self.worker_ids = np.unique(workers)
worker_dict = {y: x for x, y in enumerate(self.worker_ids)}
workers = np.array([worker_dict[x] for x in workers])
else:
self.worker_ids = worker_ids
# update parameters
self.V = len(votes)
self.U = len(np.unique(workers))
self.I = len(np.unique(instances))
self.num_epochs = num_epochs
self.burn_in = burn_in
# add more samples to previous solution
if np.array_equal(votes, self.votes) and np.array_equal(workers, self.workers) \
and np.array_equal(instances, self.instances) and np.array_equal(self.vote_ids, old_vote_ids) \
and np.array_equal(self.instance_ids, old_instance_ids) \
and np.array_equal(self.worker_ids, old_worker_ids):
# adjust label covariances
self.labels_cov = [x * (self.num_samples - 1.) / self.num_samples for x in self.labels_cov]
# update parameters
self.LL = np.concatenate((self.LL, np.zeros(num_epochs)))
old_num_samples = self.num_samples
self.num_samples += num_epochs - burn_in
self.votes = votes
self.workers = workers
self.instances = instances
# update cllda
self.cllda(votes, workers, instances, old_num_samples - 1)
# keep only vote-classes and build off of them
else:
# insert old vote-classes and initialize new vote-classes
old_vote_classes = self.vote_classes.copy()
self.vote_classes = np.zeros_like(votes)
old_dict = {y: x for x, y in enumerate(zip(self.votes, self.workers, self.instances))}
for it, index in enumerate(zip(votes, workers, instances)):
try:
self.vote_classes[it] = old_vote_classes[old_dict[index]]
except KeyError:
if self.C == self.R:
self.vote_classes[it] = votes[it]
else:
self.vote_classes[it] = self.rng.randint(self.C)
# adjust worker_prior if necessary
if not np.array_equal(self.worker_ids, old_worker_ids):
assert worker_prior is not None, "Worker priors must be provided if worker_ids change."
self.worker_prior = np.array(worker_prior)
if self.worker_prior.ndim == 2:
self.worker_prior = np.tile(self.worker_prior[np.newaxis, :, :], [self.U, 1, 1])
# adjust info to save
self.worker_mats = np.zeros((self.U, self.C, self.R))
self.labels, self.labels_cov = list(), list()
for transform in self.transform:
if transform in (None, 'none', 'clr'):
self.labels.append(np.zeros((self.I, self.C)))
self.labels_cov.append(np.zeros((self.I, self.C, self.C)))
elif transform in ('alr', 'ilr'):
self.labels.append(np.zeros((self.I, self.C - 1)))
self.labels_cov.append(np.zeros((self.I, self.C - 1, self.C - 1)))
else:
raise Exception('Unknown transform!')
# update parameters
self.LL = np.zeros(num_epochs)
self.num_samples = num_epochs
# update cllda
self.cllda(votes, workers, instances)
self.votes = votes
self.instances = instances
self.workers = workers
# no cl_transform
@staticmethod
def identity(compositional):
return compositional
def concurrent_cllda(models, votes, workers, instances, nprocs=4, **kwargs):
"""
Effortless parallelization of multiple CLLDA models.
:param models: If creating new models, an integer denoting how many models to create.
Otherwise, a list of existing models to update.
:param votes: List of vote values.
:param workers: List of uses who submitted :param votes.
:param instances: List of instances to which the :param votes pertain.
:param nprocs: Number of processors to use in the parallel pool.
:param kwargs: Other possible inputs to either CLLDA.__init__ or CLLDA.update
:return: List of new or updated CLLDA models.
"""
# open parallel pool
print('Starting multiprocessing pool...')
pool = mp.Pool(processes=nprocs)
# run CL-LDA
if isinstance(models, int):
print('Starting new CL-LDA models in parallel...')
if 'seed' in kwargs.keys():
np.random.seed(kwargs['seed'])
kwargs = [deepcopy(kwargs) for x in range(models)]
for it in range(models):
kwargs[it]['seed'] = np.random.randint(int(1e8))
out = pool.map(_new_cllda, [(votes, workers, instances, kwa) for kwa in kwargs])
elif hasattr(models, '__iter__'):
print('Updating CL-LDA models in parallel...')
out = pool.map(_update_cllda, [(model, votes, workers, instances, kwargs) for model in models])
else:
pool.close()
TypeError('Unknown type for input: models.')
# close parallel pool
pool.close()
print('Multiprocessing pool closed.')
return out
def combine_cllda(models):
"""
Combine multiple CLLDA instances.
:param models: List of CLLDA models trained with the same settings.
:return: CLLDA model which combines the input models.
"""
# check models are equivalent
assert np.equal(models[0].V, [model.V for model in models[1:]]).any(), 'Different number of votes!'
assert np.equal(models[0].U, [model.U for model in models[1:]]).any(), 'Different number of workers!'
assert np.equal(models[0].I, [model.I for model in models[1:]]).any(), 'Different number of instances!'
assert np.equal(models[0].C, [model.C for model in models[1:]]).any(), 'Different number of classes!'
assert np.equal(models[0].R, [model.R for model in models[1:]]).any(), 'Different number of responses!'
assert np.equal(models[0].worker_prior,
[model.worker_prior for model in models[1:]]).any(), 'Different worker priors!'
assert np.equal(models[0].instance_prior,
[model.instance_prior for model in models[1:]]).any(), 'Different instance priors!'
assert np.all([models[0].transform == model.transform for model in models[1:]]), 'Different transforms!'
# data info
out = deepcopy((models[0]))
# combine label estimates
out.num_samples = np.sum([model.num_samples for model in models])
# combine worker estimates
out.worker_mats = np.sum([model.worker_mats * model.num_samples for model in models],
axis=0) / out.num_samples
if all([x.updateable for x in models]):
out.vote_classes = mode(np.stack([x.vote_classes for x in models]))[0].flatten()
# combine labels and label covariances
for it in range(len(models[0].transform)):
out.labels[it] = np.sum([model.labels[it] * model.num_samples for model in models], 0) / out.num_samples
labels_corrmat = [(model.num_samples - 1.) / model.num_samples * model.labels_cov[it]
+ model.labels[it][..., np.newaxis] * model.labels[it][..., np.newaxis].transpose(0, 2, 1)
for model in models]
out.labels_cov[it] = np.sum([corrmat * model.num_samples for model, corrmat in zip(models, labels_corrmat)],
0) \
/ out.num_samples - out.labels[it][..., np.newaxis] * out.labels[it][
..., np.newaxis].transpose(0, 2, 1)
# adjust label covariances
out.labels_cov[it] *= out.num_samples / (out.num_samples - 1.)
return out
# map function
def _new_cllda(inputs):
return CLLDA(*inputs[:3], **inputs[3])
# map function
def _update_cllda(inputs):
inputs[0].update(*inputs[1:4], **inputs[4])
return inputs[0]
# if __name__ == '__main__':
# # test suite
# from DS import DS
# test_data = DS.test_data()
# CLLDA(test_data[0], test_data[1], test_data[2], num_epochs=10, burn_in=2, transform=('none', 'alr', 'ilr', 'clr'))
# cls = concurrent_cllda(4, test_data[0], test_data[1], test_data[2],
# num_epochs=10, burn_in=2, transform=('none', 'alr', 'ilr', 'clr'))
# cl = combine_cllda(cls)
# a=1