forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fieldtrip2besa.m
142 lines (123 loc) · 5.01 KB
/
fieldtrip2besa.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
function fieldtrip2besa(filename, data, varargin)
% FIELDTRIP2BESA saves a FieldTrip data structures to a corresponding BESA file. This
% export function is based on documentation that was provided by Todor Jordanov of
% BESA.
%
% Use as
% fieldtrip2besa(filename, elec)
% to export single trial data as a set of ascii-vectorized files (.avr)
%
% Use as
% fieldtrip2besa(filename, elec)
% or
% fieldtrip2besa(filename, grad)
% to export channel positions (.elp).
%
% Additional key-value pairs can be specified according to
% channel = cell-array, can be used to make subset and to reorder the channels
%
% See also FIELDTRIP2SPSS, FIELDTRIP2FIFF
% parse the optional input arguments
channel = ft_getopt(varargin, 'channel');
% this requires the "MATLAB to BESA Export functions" which are available from http://www.besa.de/downloads/matlab/
ft_hastoolbox('matlab2besa', 1);
datatype = ft_datatype(data);
switch datatype
case 'raw'
%% write raw data as *.avr
assert(isempty(channel), 'channel selection and reordering is not yet supported');
NumTrials = length(data.trial);
channel_labels = data.label;
data_scale_factor = 1.0;
time_scale_factor = 1.0;
for iTr = 1:NumTrials
% Multiply by 1000 to get the time in milliseconds.
time_samples = data.time{iTr}.*1000;
% The file name where data should be written.
file_name = sprintf('%s%03d.avr', filename, iTr);
% Multiply by 1e15 to get the data in femtoTesla.
data_matrix = data.trial{iTr}.*1e15; %FIXME
% Save the data
besa_save2Avr(custom_path, file_name, data_matrix, time_samples, channel_labels, data_scale_factor, time_scale_factor);
end
case 'timelock'
%% write timelocked data as *.avr
assert(isempty(channel), 'channel selection and reordering is not yet supported');
if isfield(data, 'trial') && strcmp(getdimord(data, 'trial'), 'rpt_chan_time')
[NumTrials, NumChans, NumSamp] = size(data.trial);
% Multiply by 1000 to get the time in milliseconds.
time_samples = data.time.*1000;
channel_labels = data.label;
data_scale_factor = 1.0;
time_scale_factor = 1.0;
for iTr = 1:NumTrials
% The file name where data should be written.
file_name = sprintf('%s%03d.avr', filename, iTr);
% Multiply by 1e15 to get the data in femtoTesla.
data_matrix = reshape(data.trial(iTr, :, :), [NumChans NumSamp]).*1e15; % FIXME
% Save the data
besa_save2Avr(custom_path, file_name, data_matrix, time_samples, channel_labels, data_scale_factor, time_scale_factor);
end
elseif isfield(data, 'avg') && strcmp(getdimord(data, 'avg'), 'chan_time')
% Multiply by 1000 to get the time in milliseconds.
time_samples = data.time.*1000;
channel_labels = data.label;
data_scale_factor = 1.0;
time_scale_factor = 1.0;
% The file name where data should be written.
file_name = sprintf('%s.avr', filename);
% Multiply by 1e15 to get the data in femtoTesla.
data_matrix = data.avg.*1e15; % FIXME
% Save the data
besa_save2Avr(custom_path, file_name, data_matrix, time_samples, channel_labels, data_scale_factor, time_scale_factor);
else
error('unsupported data structure');
end
case {'elec', 'grad'}
%% write channel data to *.elp
channel_labels = data.label;
NumChannels = length(data.label);
% Rearrange channels in grad
SortedCoordinates = zeros(NumChannels, 3);
NumBadChannels = 1; % A106
for iCh1 = 1:NumChannels
CurrLabel1 = channel{iCh1};
for iCh2 = 1:NumChannels+NumBadChannels
CurrLabel2 = data.label{iCh2};
if(strcmp(CurrLabel1, CurrLabel2))
SortedCoordinates(iCh1, :) = data.chanpos(iCh2, :);
end
end
end
% Transform to spherical coordinates
SphericalCoords = zeros(NumChannels, 3);
% Create a matrix for rotation about the z-axis.
Angle1 = -90;
rotate1 = [cosd(Angle1) -sind(Angle1) 0; sind(Angle1) cosd(Angle1) 0; 0 0 1];
% Perform rotation.
RotatedPositions = SortedCoordinates*rotate1;
for iCh = 1:NumChannels
% Get the current coordinates and normalize the radius to 1.0.
CurrCartesianCoords = RotatedPositions(iCh, :) / ...
sqrt(sum(RotatedPositions(iCh, :).^2));
% Perform the transformation from Cartesian to spherical coordinates.
[azimuth, elevation, r] = besa_transformCartesian2Spherical( ...
CurrCartesianCoords(1), CurrCartesianCoords(2), ...
CurrCartesianCoords(3));
% Assign the transform values to the output matrix.
SphericalCoords(iCh, 1) = azimuth;
SphericalCoords(iCh, 2) = elevation;
SphericalCoords(iCh, 3) = r;
end
% The type of the channels to be stored.
switch datatype
case 'grad'
channel_type = 'MEG';
case 'elec';
channel_type = 'EEG';
end
% Export elp-file
besa_save2Elp(custom_path, filename, SphericalCoords, channel_labels, channel_type);
otherwise
error('unsupported data structure');
end % switch type