forked from jpuigcerver/PyLaia
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpylaia-htr-train-ctc
executable file
·284 lines (263 loc) · 9.18 KB
/
pylaia-htr-train-ctc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#!/usr/bin/env python
from __future__ import absolute_import
import argparse
import multiprocessing
import os
import random
import numpy
import torch
from torch.optim import RMSprop
import laia.common.logging as log
import laia.data.transforms as transforms
from laia.common.arguments import add_argument, args, add_defaults
from laia.common.arguments_types import NumberInClosedRange, str2bool
from laia.common.loader import ModelLoader, StateCheckpointLoader
from laia.common.random import manual_seed
from laia.common.saver import (
CheckpointSaver,
RollingSaver,
ModelCheckpointSaver,
StateCheckpointSaver,
)
from laia.conditions import Lowest, MultipleOf, GEqThan, ConsecutiveNonDecreasing
from laia.data import ImageDataLoader, TextImageFromTextTableDataset, FixedSizeSampler
from laia.engine import Trainer, Evaluator
from laia.engine.engine import EPOCH_END, EPOCH_START
from laia.engine.feeders import ImageFeeder, ItemFeeder
from laia.experiments.htr_experiment import HTRExperiment
from laia.hooks import Hook, HookList, action, Action
from laia.losses.ctc_loss import (
CTCLossImpl,
get_default_add_logsoftmax,
set_default_add_logsoftmax,
set_default_implementation,
)
from laia.utils import SymbolsTable
def worker_init_fn(_):
# We need to reset the Numpy and Python PRNG, or we will get the
# same numbers in each epoch (when the workers are re-generated)
random.seed(torch.initial_seed() % 2 ** 31)
numpy.random.seed(torch.initial_seed() % 2 ** 31)
if __name__ == "__main__":
add_defaults(
"batch_size",
"learning_rate",
"momentum",
"gpu",
"max_epochs",
"seed",
"show_progress_bar",
"train_path",
"train_samples_per_epoch",
"valid_samples_per_epoch",
"iterations_per_update",
"save_checkpoint_interval",
"num_rolling_checkpoints",
"use_distortions",
)
add_argument(
"syms",
type=argparse.FileType("r"),
help="Symbols table mapping from strings to integers.",
)
add_argument(
"img_dirs", type=str, nargs="+", help="Directory containing word images."
)
add_argument(
"tr_txt_table",
type=argparse.FileType("r"),
help="Character transcriptions of each training image.",
)
add_argument(
"va_txt_table",
type=argparse.FileType("r"),
help="Character transcriptions of each validation image.",
)
add_argument(
"--delimiters",
type=str,
nargs="+",
default=["<space>"],
help="Sequence of characters representing the word delimiters.",
)
add_argument(
"--max_nondecreasing_epochs",
type=NumberInClosedRange(int, vmin=0),
help="Stop the training once there has been this number "
"consecutive epochs without a new lowest validation CER.",
)
add_argument(
"--model_filename", type=str, default="model", help="File name of the model."
)
add_argument(
"--checkpoint",
type=str,
default="ckpt.lowest-valid-cer*",
help="Suffix of the checkpoint to use, can be a glob pattern.",
)
add_argument(
"--use_baidu_ctc",
type=str2bool,
nargs="?",
const=True,
default=False,
help="If true, use Baidu's implementation of the CTC loss.",
)
add_argument(
"--add_logsoftmax_to_loss",
type=str2bool,
nargs="?",
const=True,
default=get_default_add_logsoftmax(),
help="If true, add a logsoftmax operation before the CTC loss to normalize the activations.",
)
args = args()
manual_seed(args.seed)
syms = SymbolsTable(args.syms)
device = torch.device("cuda:{}".format(args.gpu - 1) if args.gpu else "cpu")
# Set the default options for the CTCLoss.
set_default_add_logsoftmax(args.add_logsoftmax_to_loss)
if args.use_baidu_ctc:
set_default_implementation(CTCLossImpl.BAIDU)
model = ModelLoader(
args.train_path, filename=args.model_filename, device=device
).load()
if model is None:
log.error('Could not find the model. Have you run "pylaia-htr-create-model"?')
exit(1)
model = model.to(device)
default_img_transform = transforms.Compose(
[
transforms.vision.Convert("L"),
transforms.vision.Invert(),
transforms.vision.ToTensor(),
]
)
if args.use_distortions:
tr_img_transform = transforms.Compose(
[
transforms.vision.Convert("L"),
transforms.vision.Invert(),
transforms.vision.RandomBetaAffine(),
transforms.vision.ToTensor(),
]
)
else:
tr_img_transform = default_img_transform
log.info("Training data transforms:\n{}", str(tr_img_transform))
tr_dataset = TextImageFromTextTableDataset(
args.tr_txt_table,
args.img_dirs,
img_transform=tr_img_transform,
txt_transform=transforms.text.ToTensor(syms),
)
tr_dataset_loader = ImageDataLoader(
dataset=tr_dataset,
image_channels=1,
batch_size=args.batch_size,
num_workers=multiprocessing.cpu_count(),
shuffle=not bool(args.train_samples_per_epoch),
sampler=FixedSizeSampler(tr_dataset, args.train_samples_per_epoch)
if args.train_samples_per_epoch
else None,
worker_init_fn=worker_init_fn,
)
trainer = Trainer(
model=model,
criterion=None, # Set automatically by HTRExperiment
optimizer=RMSprop(
model.parameters(), lr=args.learning_rate, momentum=args.momentum
),
data_loader=tr_dataset_loader,
batch_input_fn=ImageFeeder(device=device, parent_feeder=ItemFeeder("img")),
batch_target_fn=ItemFeeder("txt"),
batch_id_fn=ItemFeeder("id"), # Print image ids on exception
progress_bar="Train" if args.show_progress_bar else None,
iterations_per_update=args.iterations_per_update,
)
va_dataset = TextImageFromTextTableDataset(
args.va_txt_table,
args.img_dirs,
img_transform=default_img_transform,
txt_transform=transforms.text.ToTensor(syms),
)
va_dataset_loader = ImageDataLoader(
dataset=va_dataset,
image_channels=1,
batch_size=args.batch_size,
num_workers=multiprocessing.cpu_count(),
sampler=FixedSizeSampler(va_dataset, args.valid_samples_per_epoch)
if args.valid_samples_per_epoch
else None,
)
evaluator = Evaluator(
model=model,
data_loader=va_dataset_loader,
batch_input_fn=ImageFeeder(device=device, parent_feeder=ItemFeeder("img")),
batch_target_fn=ItemFeeder("txt"),
batch_id_fn=ItemFeeder("id"),
progress_bar="Valid" if args.show_progress_bar else None,
)
experiment = HTRExperiment(
trainer, evaluator, word_delimiters=[syms[sym] for sym in args.delimiters]
)
def ckpt_saver(filename, obj):
return RollingSaver(
StateCheckpointSaver(
CheckpointSaver(os.path.join(args.train_path, filename)),
obj,
device=device,
),
keep=args.num_rolling_checkpoints,
)
saver_best_cer = ckpt_saver("experiment.ckpt.lowest-valid-cer", experiment)
saver_best_wer = ckpt_saver("experiment.ckpt.lowest-valid-wer", experiment)
@action
def save(saver, epoch):
saver.save(suffix=epoch)
# Set hooks
trainer.add_hook(
EPOCH_END,
HookList(
# Save on best CER
Hook(Lowest(experiment.valid_cer()), Action(save, saver=saver_best_cer)),
# Save on best WER
Hook(Lowest(experiment.valid_wer()), Action(save, saver=saver_best_wer)),
),
)
if args.save_checkpoint_interval:
# Save every `save_checkpoint_interval` epochs
log.get_logger("laia.hooks.conditions.multiple_of").setLevel(log.WARNING)
trainer.add_hook(
EPOCH_END,
Hook(
MultipleOf(trainer.epochs, args.save_checkpoint_interval),
Action(save, saver=ckpt_saver("experiment.ckpt", experiment)),
),
)
if args.max_nondecreasing_epochs:
# Stop when the validation CER hasn't improved in
# `max_nondecreasing_epochs` consecutive epochs
trainer.add_hook(
EPOCH_END,
Hook(
ConsecutiveNonDecreasing(
experiment.valid_cer(), args.max_nondecreasing_epochs
),
trainer.stop,
),
)
if args.max_epochs:
# Stop when `max_epochs` has been reached
trainer.add_hook(
EPOCH_START, Hook(GEqThan(trainer.epochs, args.max_epochs), trainer.stop)
)
# Continue from the given checkpoint, if possible
StateCheckpointLoader(experiment, device=device).load_by(
os.path.join(args.train_path, "experiment.{}".format(args.checkpoint))
)
experiment.run()
# Experiment finished. Save the model separately
ModelCheckpointSaver(
CheckpointSaver(os.path.join(args.train_path, "model.ckpt")), model
).save(suffix="last")