forked from bbaibowen/EfficientDet_anchor_free
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
178 lines (137 loc) · 4.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import torch
from torch import nn, optim
from torch.utils.data import DataLoader, sampler
from tqdm import tqdm
from data.dataset import COCODataset, collate_fn
from model.model import EfficientDet_Free
from data.transform import preset_transform
from tool.distributed import (
get_rank,
synchronize,
reduce_loss_dict,
DistributedSampler,
all_gather
)
from tool.evaluate import evaluate
from config import Config
def accumulate_predictions(predictions):
all_predictions = all_gather(predictions)
if get_rank() != 0:
return
predictions = {}
for p in all_predictions:
predictions.update(p)
ids = list(sorted(predictions.keys()))
if len(ids) != ids[-1] + 1:
print('Evaluation results is not contiguous')
predictions = [predictions[i] for i in ids]
return predictions
@torch.no_grad()
def valid(args, epoch, loader, dataset, model, device):
if args.distributed:
model = model.module
torch.cuda.empty_cache()
model.eval()
pbar = tqdm(loader, dynamic_ncols=True)
preds = {}
for images, targets, ids in pbar:
model.zero_grad()
images = images.to(device)
targets = [target.to(device) for target in targets]
pred, _ = model(images.tensors, images.sizes)
pred = [p.to('cpu') for p in pred]
preds.update({id: p for id, p in zip(ids, pred)})
preds = accumulate_predictions(preds)
if get_rank() != 0:
return
evaluate(dataset, preds)
def train(args, epoch, loader, model, optimizer, device):
model.train()
if get_rank() == 0:
pbar = tqdm(loader, dynamic_ncols=True)
else:
pbar = loader
for images, targets, _ in pbar:
model.zero_grad()
images = images.to(device)
targets = [target.to(device) for target in targets]
_, loss_dict = model(images.tensors, targets=targets)
loss_cls = loss_dict['loss_cls'].mean()
loss_box = loss_dict['loss_box'].mean()
loss_center = loss_dict['loss_center'].mean()
loss = loss_cls + loss_box + loss_center
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 10)
optimizer.step()
loss_reduced = reduce_loss_dict(loss_dict)
loss_cls = loss_reduced['loss_cls'].mean().item()
loss_box = loss_reduced['loss_box'].mean().item()
loss_center = loss_reduced['loss_center'].mean().item()
if get_rank() == 0:
pbar.set_description(
(
'epoch: {}; cls: {}; box: {}; center: {}'.format(epoch + 1,loss_cls,loss_box,loss_center)
)
)
def data_sampler(dataset, shuffle, distributed):
if distributed:
return DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return sampler.RandomSampler(dataset)
else:
return sampler.SequentialSampler(dataset)
if __name__ == '__main__':
args = Config()
n_gpu = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
args.distributed = n_gpu > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
synchronize()
device = 'cuda:0'
train_set = COCODataset(args.path, 'train', preset_transform(args, train=True))
valid_set = COCODataset(args.path, 'val', preset_transform(args, train=False))
model = EfficientDet_Free(args)
model.load_state_dict()
model = model.to(device)
optimizer = optim.SGD(
model.parameters(),
lr=args.lr,
momentum=0.9,
weight_decay=args.l2,
nesterov=True,
)
scheduler = optim.lr_scheduler.MultiStepLR(
optimizer, milestones=[16, 22], gamma=0.1
)
if args.distributed:
model = nn.parallel.DistributedDataParallel(
model,
device_ids=[args.local_rank],
output_device=args.local_rank,
broadcast_buffers=False,
)
train_loader = DataLoader(
train_set,
batch_size=args.batch,
sampler=data_sampler(train_set, shuffle=True, distributed=args.distributed),
num_workers=2,
collate_fn=collate_fn(args),
)
valid_loader = DataLoader(
valid_set,
batch_size=args.batch,
sampler=data_sampler(valid_set, shuffle=False, distributed=args.distributed),
num_workers=2,
collate_fn=collate_fn(args),
)
for epoch in range(args.epoch):
train(args, epoch, train_loader, model, optimizer, device)
valid(args, epoch, valid_loader, valid_set, model, device)
scheduler.step()
if get_rank() == 0:
torch.save(
{'model': model.module.state_dict(), 'optim': optimizer.state_dict()},
'checkpoint/epoch-{epoch + 1}.pt',
)