-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
343 lines (297 loc) · 13.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import torch
import torch.nn as nn
import torch.utils.data as Data
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import json
import configparser
import pickle as pkl
from time import time
from datetime import datetime
import shutil
import argparse
import random
import math
import sys
import os
import ipdb
curPath = os.path.abspath(os.path.dirname(__file__))
rootPath = os.path.split(curPath)[0]
sys.path.append(rootPath)
from lib.dataloader import normal_and_generate_dataset_time,get_mask,get_adjacent,get_grid_node_map_maxtrix
from lib.early_stop import EarlyStopping
from RiskContra import RiskContra
from lib.utils import mask_loss,compute_loss,predict_and_evaluate,create_mask,compute_contra_loss,mix_up
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, help='configuration file', default='config/chicago/RiskContra_Chicago_Config.json')
parser.add_argument("--gpus", type=str,help="test program", default='0')
parser.add_argument("--test", action="store_true", help="test program")
parser.add_argument("--lr", type=float, default=1e-3) #-4
parser.add_argument("--fusion", type=int, default=8) #12
parser.add_argument("--temp", type=float, default=0.1)
parser.add_argument("--weight", type=float, default=0.1)
parser.add_argument("--K", type=int, default=8)
args = parser.parse_args()
config_filename = args.config
with open(config_filename, 'r') as f:
config = json.loads(f.read())
print(json.dumps(config, sort_keys=True, indent=4))
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
north_south_map = config['north_south_map']
west_east_map = config['west_east_map']
all_data_filename = config['all_data_filename']
mask_filename = config['mask_filename']
road_adj_filename = config['road_adj_filename']
risk_adj_filename = config['risk_adj_filename']
poi_adj_filename = config['poi_adj_filename']
grid_node_filename = config['grid_node_filename']
grid_node_map = get_grid_node_map_maxtrix(grid_node_filename)
num_of_vertices = grid_node_map.shape[1]
# patience = config['patience']
patience = 10
delta = config['delta']
learning_rate = args.lr
fusion = args.fusion
t = args.temp
wei = args.weight
K = args.K
if config['seed'] is not None:
seed = config['seed']
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic=True
np.random.seed(seed)
random.seed(seed)
train_rate = config['train_rate']
valid_rate = config['valid_rate']
recent_prior = config['recent_prior']
week_prior = config['week_prior']
one_day_period = config['one_day_period']
days_of_week = config['days_of_week']
pre_len = config['pre_len']
seq_len = recent_prior + week_prior
training_epoch = config['training_epoch']
def log_string(log, string):
log.write(string + '\n')
log.flush()
print(string)
def training(net,
training_epoch,
train_loader,
val_loader,
test_loader,
high_test_loader,
road_adj,
risk_adj,
poi_adj,
risk_mask,
trainer,
early_stop,
device,
scaler,
data_type='nyc'
):
start = time()
global_step = 1
log_file = '/data/chachen/year2/RiskContra_final_version/chi_final/log/log'+str(t)
log = open(log_file, 'w')
for epoch in range(1,training_epoch+1):
net.train()
batch = 1
for train_feature_new,train_feature,target_time,gragh_feature,train_label_new,train_label in train_loader:
start_time = time()
train_feature_new,train_feature,target_time,gragh_feature,train_label_new,train_label = \
train_feature_new.to(device),train_feature.to(device),\
target_time.to(device),gragh_feature.to(device),train_label_new.to(device),train_label.to(device)
# ipdb.set_trace()
train_feature_mix,train_label_mix,gragh_feature_mix = mix_up(train_feature,train_feature_new,train_label,train_label_new,grid_node_map,wei)
# ipdb.set_trace()
mask_matrix_temp, mask_matrix = create_mask(train_feature_mix,train_label_mix)
# mask_matrix_temp, mask_matrix = create_mask(train_feature,train_label)
pred, _ = net(train_feature,target_time,gragh_feature,road_adj,risk_adj,poi_adj,grid_node_map)
_, grid_mlp = net(train_feature_mix,target_time,gragh_feature,road_adj,risk_adj,poi_adj,grid_node_map)
contra_loss = compute_contra_loss(mask_matrix_temp, mask_matrix, grid_mlp, t)
orig_loss = mask_loss(pred,train_label,risk_mask,data_type=data_type)#l的shape:(1,)
# mix_loss = mask_loss(pred_mix,train_label_mix,risk_mask,data_type=data_type)
l = orig_loss + 0.001*contra_loss
trainer.zero_grad()
l.backward()
trainer.step()
training_loss_origin = orig_loss.cpu().item()
training_loss_contra = contra_loss.cpu().item()
training_loss_total = l.cpu().item()
print('global step: %s, epoch: %s, batch: %s, orig_loss: %.6f, contra_loss: %.6f, total_loss: %.6f, time: %.2fs'
% (global_step,epoch, batch, training_loss_origin, training_loss_contra, training_loss_total, time() - start_time),flush=True)
batch+=1
global_step+=1
embed = grid_mlp.cpu().detach().numpy()
# np.save('embed/embed_{}'.format(epoch), embed)
#compute va/test loss
val_loss = compute_loss(net,val_loader,risk_mask,road_adj,risk_adj,poi_adj,grid_node_map,global_step-1,device,data_type)
print('global step: %s, epoch: %s,val loss:%.6f' %(global_step-1,epoch,val_loss),flush=True)
log_string(log, 'global step: %s, epoch: %s,val loss:%.6f' %(global_step-1,epoch,val_loss))
if epoch == 1 or val_loss < early_stop.best_score:
test_rmse,test_recall,test_map,test_inverse_trans_pre,test_inverse_trans_label = \
predict_and_evaluate(net,test_loader,risk_mask,road_adj,risk_adj,poi_adj,grid_node_map,global_step-1,scaler,device)
# np.save('pred', test_inverse_trans_pre)
# np.save('label', test_inverse_trans_label)
high_test_rmse,high_test_recall,high_test_map,_,_ = \
predict_and_evaluate(net,high_test_loader,risk_mask,road_adj,risk_adj,poi_adj,grid_node_map,global_step-1,scaler,device)
print('global step: %s, epoch: %s, test RMSE: %.4f,test Recall: %.2f%%,test MAP: %.4f,hihg test RMSE: %.4f,high test Recall: %.2f%%,high test MAP: %.4f'
% (global_step-1,epoch, test_rmse,test_recall,test_map,high_test_rmse,high_test_recall,high_test_map),flush=True)
log_string(log, 'global step: %s, epoch: %s, test RMSE: %.4f,test Recall: %.2f%%,test MAP: %.4f,hihg test RMSE: %.4f,high test Recall: %.2f%%,high test MAP: %.4f'
% (global_step-1,epoch, test_rmse,test_recall,test_map,high_test_rmse,high_test_recall,high_test_map))
#early stop according to val loss
early_stop(val_loss,test_rmse,test_recall,test_map,
high_test_rmse,high_test_recall,high_test_map,
test_inverse_trans_pre, test_inverse_trans_label)
if early_stop.early_stop:
print("Early Stopping in global step: %s, epoch: %s"%(global_step,epoch),flush=True)
print('best test RMSE: %.4f,best test Recall: %.2f%%,best test MAP: %.4f'
% (early_stop.best_rmse,early_stop.best_recall,early_stop.best_map),flush=True)
print('best test high RMSE: %.4f,best test high Recall: %.2f%%,best high test MAP: %.4f'
% (early_stop.best_high_rmse,early_stop.best_high_recall,early_stop.best_high_map),flush=True)
log_string(log, 'best test RMSE: %.4f,best test Recall: %.2f%%,best test MAP: %.4f'
% (early_stop.best_rmse,early_stop.best_recall,early_stop.best_map))
log_string(log, 'best test high RMSE: %.4f,best test high Recall: %.2f%%,best high test MAP: %.4f'
% (early_stop.best_high_rmse,early_stop.best_high_recall,early_stop.best_high_map))
break
end = time()
print("total time: ", (end-start))
return early_stop.best_rmse,early_stop.best_recall,early_stop.best_map
def main(config):
batch_size = config['batch_size']
# learning_rate = config['learning_rate']
num_of_gru_layers = config['num_of_gru_layers']
gru_hidden_size = config['gru_hidden_size']
gcn_num_filter = config['gcn_num_filter']
loaders = []
scaler = ""
train_data_shape = ""
graph_feature_shape = ""
for idx,(x_new,x,y_new,y,target_times,high_x,high_y,high_target_times,scaler) in enumerate(normal_and_generate_dataset_time(
all_data_filename,
train_rate=train_rate,
valid_rate=valid_rate,
recent_prior = recent_prior,
week_prior = week_prior,
one_day_period = one_day_period,
days_of_week = days_of_week,
pre_len = pre_len)):
if args.test:
x = x[:100]
y = y[:100]
target_times = target_times[:100]
high_x = high_x[:100]
high_y = high_y[:100]
high_target_times = high_target_times[:100]
if 'nyc' in all_data_filename:
graph_x = x[:,:,[0,46,47],:,:].reshape((x.shape[0],x.shape[1],-1,north_south_map*west_east_map))
high_graph_x = high_x[:,:,[0,46,47],:,:].reshape((high_x.shape[0],high_x.shape[1],-1,north_south_map*west_east_map))
graph_x = np.dot(graph_x,grid_node_map)
high_graph_x = np.dot(high_graph_x,grid_node_map)
if 'chicago' in all_data_filename:
graph_x = x[:,:,[0,39,40],:,:].reshape((x.shape[0],x.shape[1],-1,north_south_map*west_east_map))
high_graph_x = high_x[:,:,[0,39,40],:,:].reshape((high_x.shape[0],high_x.shape[1],-1,north_south_map*west_east_map))
graph_x = np.dot(graph_x,grid_node_map)
high_graph_x = np.dot(high_graph_x,grid_node_map)
print("feature:",str(x.shape),"label:",str(y.shape),"time:",str(target_times.shape),
"high feature:",str(high_x.shape),"high label:",str(high_y.shape))
print("graph_x:",str(graph_x.shape),"high_graph_x:",str(high_graph_x.shape))
if idx == 0:
scaler = scaler
train_data_shape = x.shape
time_shape = target_times.shape
graph_feature_shape = graph_x.shape
loaders.append(Data.DataLoader(
Data.TensorDataset(
torch.from_numpy(x_new),
torch.from_numpy(x),
torch.from_numpy(target_times),
torch.from_numpy(graph_x),
torch.from_numpy(y_new),
torch.from_numpy(y)
),
batch_size=batch_size,
shuffle=(idx == 0)
))
if idx ==1:
loaders.append(Data.DataLoader(
Data.TensorDataset(
torch.from_numpy(x),
torch.from_numpy(target_times),
torch.from_numpy(graph_x),
torch.from_numpy(y)
),
batch_size=batch_size,
shuffle=(idx == 0)
))
if idx == 2:
loaders.append(Data.DataLoader(
Data.TensorDataset(
torch.from_numpy(x),
torch.from_numpy(target_times),
torch.from_numpy(graph_x),
torch.from_numpy(y)
),
batch_size=batch_size,
shuffle=(idx == 0)
))
high_test_loader = Data.DataLoader(
Data.TensorDataset(
torch.from_numpy(high_x),
torch.from_numpy(high_target_times),
torch.from_numpy(high_graph_x),
torch.from_numpy(high_y)
),
batch_size=batch_size,
shuffle=(idx == 0)
)
train_loader, val_loader, test_loader = loaders
nums_of_filter = []
for _ in range(2):
nums_of_filter.append(gcn_num_filter)
Model = RiskContra(train_data_shape[2],num_of_gru_layers,seq_len,pre_len,
gru_hidden_size,time_shape[1],graph_feature_shape[2],
nums_of_filter,north_south_map,west_east_map,fusion,K)
#multi gpu
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!",flush=True)
Model = nn.DataParallel(Model)
Model.to(device)
# print(Model)
num_of_parameters = 0
for name,parameters in Model.named_parameters():
num_of_parameters += np.prod(parameters.shape)
print("Number of Parameters: {}".format(num_of_parameters), flush=True)
trainer = optim.AdamW(Model.parameters(), lr=learning_rate)
early_stop = EarlyStopping(patience=patience,delta=delta)
risk_mask = get_mask(mask_filename)
road_adj = get_adjacent(road_adj_filename)
risk_adj = get_adjacent(risk_adj_filename)
if poi_adj_filename == "":
poi_adj = None
else:
poi_adj = get_adjacent(poi_adj_filename)
best_mae,best_mse,best_rmse = training(
Model,
training_epoch,
train_loader,
val_loader,
test_loader,
high_test_loader,
road_adj,
risk_adj,
poi_adj,
risk_mask,
trainer,
early_stop,
device,
scaler,
data_type = config['data_type']
)
return best_mae,best_mse,best_rmse
if __name__ == "__main__":
main(config)