forked from yunjey/domain-transfer-network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
31 lines (25 loc) · 1.09 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import tensorflow as tf
from model import DTN
from solver import Solver
flags = tf.app.flags
flags.DEFINE_string('mode', 'train', "'pretrain', 'train' or 'eval'")
flags.DEFINE_string('model_save_path', 'model', "directory for saving the model")
flags.DEFINE_string('sample_save_path', 'sample', "directory for saving the sampled images")
FLAGS = flags.FLAGS
def main(_):
model = DTN(mode=FLAGS.mode, learning_rate=0.0003)
solver = Solver(model, batch_size=100, pretrain_iter=20000, train_iter=2000, sample_iter=100,
svhn_dir='svhn', mnist_dir='mnist', model_save_path=FLAGS.model_save_path, sample_save_path=FLAGS.sample_save_path)
# create directories if not exist
if not tf.gfile.Exists(FLAGS.model_save_path):
tf.gfile.MakeDirs(FLAGS.model_save_path)
if not tf.gfile.Exists(FLAGS.sample_save_path):
tf.gfile.MakeDirs(FLAGS.sample_save_path)
if FLAGS.mode == 'pretrain':
solver.pretrain()
elif FLAGS.mode == 'train':
solver.train()
else:
solver.eval()
if __name__ == '__main__':
tf.app.run()