-
Notifications
You must be signed in to change notification settings - Fork 3
/
evaluation.py
120 lines (86 loc) · 3.6 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import glob
import os
import time
from collections import OrderedDict
import numpy as np
import torch
import cv2
import argparse
from natsort import natsort
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
import lpips
class Measure():
def __init__(self, net='alex', use_gpu=False):
self.device = 'cuda' if use_gpu else 'cpu'
self.model = lpips.LPIPS(net=net)
self.model.to(self.device)
def measure(self, imgA, imgB):
return [float(f(imgA, imgB)) for f in [self.psnr, self.ssim, self.lpips]]
def lpips(self, imgA, imgB, model=None):
tA = t(imgA).to(self.device)
tB = t(imgB).to(self.device)
dist01 = self.model.forward(tA, tB).item()
return dist01
def ssim(self, imgA, imgB):
# multichannel: If True, treat the last dimension of the array as channels. Similarity calculations are done independently for each channel then averaged.
score, diff = ssim(imgA, imgB, full=True, multichannel=True)
return score
def psnr(self, imgA, imgB):
psnr_val = psnr(imgA, imgB)
return psnr_val
def t(img):
def to_4d(img):
assert len(img.shape) == 3
assert img.dtype == np.uint8
img_new = np.expand_dims(img, axis=0)
assert len(img_new.shape) == 4
return img_new
def to_CHW(img):
return np.transpose(img, [2, 0, 1])
def to_tensor(img):
return torch.Tensor(img)
return to_tensor(to_4d(to_CHW(img))) / 127.5 - 1
def fiFindByWildcard(wildcard):
return natsort.natsorted(glob.glob(wildcard, recursive=True))
def imread(path):
return cv2.imread(path)[:, :, [2, 1, 0]]
def format_result(psnr, ssim, lpips):
return f'{psnr:0.4f}, {ssim:0.4f}, {lpips:0.4f}'
def measure_dirs(dirA, dirB, use_gpu, verbose=False):
if verbose:
vprint = lambda x: print(x)
else:
vprint = lambda x: None
t_init = time.time()
paths_A = fiFindByWildcard(os.path.join(dirA, f'*.{type}'))
paths_B = fiFindByWildcard(os.path.join(dirB, f'*.{type}'))
vprint("Comparing: ")
vprint(dirA)
vprint(dirB)
measure = Measure(use_gpu=use_gpu)
results = []
for pathA, pathB in zip(paths_A, paths_B):
result = OrderedDict()
t = time.time()
result['psnr'], result['ssim'], result['lpips'] = measure.measure(imread(pathA), imread(pathB))
d = time.time() - t
vprint(f"{pathA.split('/')[-1]}, {pathB.split('/')[-1]}, {format_result(**result)}, {d:0.1f}")
results.append(result)
psnr = np.mean([result['psnr'] for result in results])
ssim = np.mean([result['ssim'] for result in results])
lpips = np.mean([result['lpips'] for result in results])
vprint(f"Final Result: {format_result(psnr, ssim, lpips)}, {time.time() - t_init:0.1f}s")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-dirA', default='/mnt/data-hdd2/bailong/Low-light-Enhancement/RLE_Dataset_Processed/LoL_KC/eval15/high', type=str)
parser.add_argument('-dirB', default='/mnt/data-hdd2/bailong/Low-light-Enhancement/MIRNet/results/KC_ablation/Curveonly', type=str)
parser.add_argument('-type', default='png')
parser.add_argument('--use_gpu', default=True)
args = parser.parse_args()
dirA = args.dirA
dirB = args.dirB
type = args.type
use_gpu = args.use_gpu
if len(dirA) > 0 and len(dirB) > 0:
measure_dirs(dirA, dirB, use_gpu=use_gpu, verbose=True)