Skip to content

Latest commit

 

History

History
77 lines (54 loc) · 2.98 KB

README.md

File metadata and controls

77 lines (54 loc) · 2.98 KB

English Version | 中文版说明

albert_pytorch

This repository contains a PyTorch implementation of the albert model from the paper

A Lite Bert For Self-Supervised Learning Language Representations

by Zhenzhong Lan. Mingda Chen....

Dependencies

  • pytorch=1.10
  • cuda=9.0
  • cudnn=7.5
  • scikit-learn
  • sentencepiece

Download Pre-trained Models of English

Official download links: google albert

Adapt to this version,download pytorch model (google drive):

v1

v2

Fine-tuning

1. Place config.json and 30k-clean.model into the prev_trained_model/albert_base_v2 directory. example:

├── prev_trained_model
|  └── albert_base_v2
|  |  └── pytorch_model.bin
|  |  └── config.json
|  |  └── 30k-clean.model

2.convert albert tf checkpoint to pytorch

python convert_albert_tf_checkpoint_to_pytorch.py \
    --tf_checkpoint_path=./prev_trained_model/albert_base_tf_v2 \
    --bert_config_file=./prev_trained_model/albert_base_v2/config.json \
    --pytorch_dump_path=./prev_trained_model/albert_base_v2/pytorch_model.bin

The General Language Understanding Evaluation (GLUE) benchmark is a collection of nine sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems.

Before running anyone of these GLUE tasks you should download the GLUE data by running this script and unpack it to some directory $DATA_DIR.

3.run sh scripts/run_classifier_sst2.shto fine tuning albert model

Result

Performance of ALBERT on GLUE benchmark results using a single-model setup on dev:

Cola Sst-2 Mnli Sts-b
metric matthews_corrcoef accuracy accuracy pearson
model Cola Sst-2 Mnli Sts-b
albert_base_v2 0.5756 0.926 0.8418 0.9091
albert_large_v2 0.5851 0.9507 0.9151
albert_xlarge_v2 0.6023 0.9221