-
Notifications
You must be signed in to change notification settings - Fork 0
/
research.html
executable file
·335 lines (284 loc) · 14.3 KB
/
research.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
<!DOCTYPE HTML>
<!--
Spatial by TEMPLATED templated.co @templatedco Released for free under the
Creative Commons Attribution 3.0 license (templated.co/license)
-->
<html> <head>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async
src="https://www.googletagmanager.com/gtag/js?id=UA-75496748-3"></script>
<script> window.dataLayer = window.dataLayer || []; function gtag()
{dataLayer.push(arguments);} gtag('js', new Date());
gtag('config', 'UA-75496748-3'); </script>
<!-- End Google Analytics -->
<title>Research - Marcus Lofverstrom</title> <meta charset="utf-8" />
<meta name="viewport" content="width=device-width,
initial-scale=1" /> <link rel="stylesheet"
href="assets/css/main.css" /> </head> <body>
<!-- Header -->
<header id="header"> <h1><strong><a href="index.html"><p
style="color:#080808";> Earth System Dynamics
Lab</p></a></strong></h1> <nav id="nav"> <ul> <li><a
href="team.html">Team</a></li> <li><a
href="research.html">Research</a></li> <li><a
href="publications.html">Publications</a></li> <li><a
href="teaching.html">Teaching</a></li> <li><a
href="opportunities.html">Opportunities</a></li> <li><a
href="contact.html">Contact</a></li> </ul> </nav> </header>
<a href="#menu" class="navPanelToggle"><span class="fa fa-bars"></span></a>
<!-- Main -->
<section id="main" class="wrapper"> <div class="container"> <header
class="major special"> <h2>Research Program</h2> </header> The
goal of my research is to improve our understanding of how the
climate system works and how it has evolved over a large range
of time scales and forcing scenarios in Earth’s history and into
the future. These questions can only be fully answered when
considering the entire Earth system simultaneously, and a broad
and interdisciplinary research program is therefore required. To
this end, my research bridges the fields of atmosphere and ocean
dynamics, (paleo-)climatology, and glaciology, and utilizes a
hierarchy of numerical models (from idealized to fully coupled
state-of-the-art Earth-system models), theoretical approaches,
and encompasses many temporal and spatial scales. The commitment
to a broad research program is epitomized in the name of my
research lab, the “Earth-System Dynamics Lab”. <br><br>
Since joining the University of Arizona, much of my time has
been devoted to forging work relationships, nurturing
existing collaborations, developing my own research and
teaching programs, and working on ongoing research
projects. My current research activities can be divided
into a number of overarching themes, described below.
<hr />
<section> <h3>Climate modeling</h3>
Climate modeling in an invaluable tool in climate
science that enables detailed studies of factors
controlling the observed circulation. Numerical
modeling can also be used to study past climate
states, as well as make predictions of the
future evolution of the climate system under
climate change. This <a
href="https://www.youtube.com/watch?v=YwHgqDu75s8"
style="color:#0011ff" target="_blank">video</a>
by shows an application of nested grids in <a
href="https://www.cesm.ucar.edu/models/cesm2/"
style="color:#0011ff" target="_blank">CESM2</a>
(courtesy of <a
href="https://staff.ucar.edu/users/aherring"
style="color:#0011ff" target="_blank">Dr. Adam Herrington, NCAR</a>).
<br><br>
<b>Related papers:</b><br> <ul>
<li> <span>Herrington, A.R., P.H. Lauritzen, <b>M.
Lofverstrom</b>, W.H. Lipscomb, A. Gettelman, and M.A.
Taylor: Gettelman, A., & Taylor, M. A. (2022). Impact of
grids and dynamical cores in CESM2.2 on the surface mass
balance of the Greenland Ice Sheet. Journal of Advances
in Modeling Earth Systems, 14, e2022MS003192.
https://doi.org/10.1029/2022MS003192</span> | <a
href="https://drive.google.com/file/d/1M_lO2-nSMmLALBEkSfB4TVtUoJ3e02Km/view?usp=share_link"
style="color:#0011ff" target="_blank">PDF</a> | <a
href="https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022MS003192"
style="color:#0011ff" target="_blank">online</a>
</li>
<li> <span>Muntjewerf, L., W. J. Sacks, <b>M.
Lofverstrom</b>, J.G. Fyke, W.H. Lipscomb,
C. Ernani da Silva, M. Vizcaino, K.
Thayer-Calder, and J. T. M. Lenaerts:
Description and demonstration of the coupled
Community Earth System Model v2 – Community
Ice Sheet Model v2 (CESM2-CISM2). Journal of
Advances in Modeling Earth Systems, 13,
e2020MS002356.
https://doi.org/10.1029/2020MS002356</span>
| <a
href="https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020MS002356"
style="color:#0011ff" target="_blank">online</a> </li>
<li> <span><b>Lofverstrom, M.</b>, J. Fyke, K.
Thayer-Calder, L. Muntjewerf, M. Vizcaino,
W. J. Sacks, W. H. Lipscomb, B. L.
Otto-Bliesner, and S. L. Bradley(2020): An
efficient ice-sheet/Earth system model
spinup procedure for CESM2-CISM2:
description, evaluation and broader
applicability, Journal of Advances in
Modeling Earth Systems, 12, e2019MS001984,
doi: 10.1029/2019MS001984</span> | <a
href="https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2019MS001984"
style="color:#0011ff"
target="_blank">PDF</a>, <a
href="https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001984"
style="color:#0011ff" target="_blank">online</a>. </li>
<li> <span><b>Lofverstrom, M.</b>, and J.
Liakka (2018): The influence of atmospheric
grid resolution in a climate model-forced
ice sheet simulation, The Cryosphere, 12,
1499–1510, doi: 10.5194/tc-12-1499-2018
(highlighted)</span> | <a
href="https://d-nb.info/1161128980/34"
style="color:#0011ff"
target="_blank">PDF</a>, <a
href="https://tc.copernicus.org/articles/12/1499/2018/"
style="color:#0011ff" target="_blank">online</a>. </li>
</ul>
</section>
<hr />
<section> <h3>Dynamic Meteorology</h3>
<!--
<div class="box alt"> <div class="row 50% uniform"> </div> </div>
-->
<!--
<div class="5u"><span class="image fit"><img
src="images/research/wave_train.png" alt="" /></span></div>
-->
My research group is studying the interactions that
shape the planetary scale atmospheric
circulation. These interactions consist of
flow-topography interactions, diabatic heating
effects, as well as complex internal wave dynamics. <br><br>
Some of the topics we study: <ul>
<li>Flow-topography interactions</li> <li>Rossby
wave dynamics</li> <li>Jet stream and storm
track dynamics</li> <li>Climate/ice sheet interactions</li> </ul>
<b>Related papers:</b><br> <ul>
<li><span><b>Lofverstrom, M.</b> (2020): A
dynamic link between precipitation extremes in
western North America and Europe at the Last
Glacial Maximum, Earth and Planetary Science
Letters, 534, doi: 10.1016/j.epsl.2020.116081</span> |
<!-- <a
<!-- href="https://www.dropbox.com/s/s3vzsvz25qcwvp2/DeserEA2020_NatureClimateChange.pdf?raw=1"
<!-- target="_blank">PDF</a>, -->
<a
href="https://www.sciencedirect.com/science/article/abs/pii/S0012821X20300248"
style="color:#0011ff" target="_blank">online</a>. </li>
<li> <span><b>Lofverstrom, M.</b>, and J. M. Lora
(2017): Abrupt regime shifts in the North
Atlantic atmospheric circulation over the last
deglaciation, Geophys. Res. Lett., 44, doi:
10.1002/2017GL074274</span> | <a
href="https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2017GL074274"
style="color:#0011ff" target="_blank">PDF</a>,
<a
href="https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017GL074274"
style="color:#0011ff" target="_blank">online</a>. </li>
<li> <span><b>Lofverstrom, M.</b>, R. Caballero,
J. Nilsson, and G. Messori(2016): Stationary
wave reflection as a mechanism for
zonalising the Atlantic winter jet at the
LGM, J. Atm. Sci., 73, 3329–3342, doi:
10.1175/JAS-D-15-0295.1</span> | <a
href="http://climdyn.misu.su.se/publications/pdf/lofverstrom.etal.2016.stationary.pdf"
style="color:#0011ff"
target="_blank">PDF</a>, <a
href="https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL071012"
style="color:#0011ff" target="_blank">online</a>. </li>
<li><span>Liakka, J., J. Nilsson, and <b>M.
Lofverstrom</b> (2011): Interactions between
stationary waves and ice sheets: linear versus
nonlinear atmospheric response, Clim. Dyn., 38,
1249– 1262, doi:
10.1007/s00382-011-1004-6</span> | <a
href="https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf/10.1007/s00382-011-1004-6.pdf&casa_token=s8aQteTIt88AAAAA:XoKPBZtqL5ncJeOrEJgAEyMqyK8vR4Jz3dPDOjFOIvrXP4wd3Py6hru0tuwGoJ7vNOZ6_wLJo1Ib_GhDug"
style="color:#0011ff" target="_blank">PDF</a>,
<a
href="https://link.springer.com/article/10.1007%2Fs00382-011-1004-6"
style="color:#0011ff" target="_blank">online</a>. </li>
</section>
<hr />
<!-- Text -->
<section> <h3>Paleo-climate dynamics</h3> My research has
provided an improved understanding of the complex
interactions between the atmospheric circulation and the
evolving ice sheets over this important period in
Earth's history. For example, my work has demonstrated
that the continent-wide LGM Laurentide ice sheet
(LIS) is not only extreme in terms of its scale but also
in its influence on the planetary-scale atmospheric
circulation. While the smaller pre- and post-LGM ice
sheets are found to have a fairly limited influence on
the planetary-scale atmospheric circulation, the LGM LIS
promotes both stationary wave breaking and wave
reflection, which yield an altered circulation regime
with a strong and zonally oriented North Atlantic jet
stream and storm track. This is shown to have large
implications for the spatio-temporal evolution of the
Eurasian ice sheet. In contrast, the growth-trajectory
of the North American ice sheet is found to be more
strongly controlled by local atmosphere--ice-sheet interactions. <br><br>
<b>Some of the topics we study:</b> <ul> <li>Last
Interglacial warm period</li> <li>Last glacial
inception</li> <li>Last glacial maximum</li>
<li>Glacial climates</li> <li>Late Pliocene warm period</li> </ul>
<b>Related papers:</b><br> <ul> <li><span>Menemenlis,
S., J. Lora, <b>M. Lofverstrom</b>, and D. Chandan:
Influence of Stationary Waves on mid-Pliocene
Atmospheric Rivers and Hydroclimate, Global and
Planetary Change (in press)</span> </li>
<li><span><b>Lofverstrom, M.</b>, and J. Liakka
(2016): On the limited ice intrusion in
Alaska at the Last Glacial Maximum, Geophys.
Res. Letters, 43, doi:
10.1002/2016GL071012</span> | <a
href="https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2016GL071012"
style="color:#0011ff"
target="_blank">PDF</a>, <a
href="https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL071012"
style="color:#0011ff" target="_blank">online</a>. </li>
<li><span>Kageyama, M., S. P. Harrison, M.
Kapsch, <b>M. Lofverstrom</b>, J. M. Lora,
U. Mikolajewicz, S. Sherriff-Tadano, T.
Vadsaria, A. Abe-Ouchi, N. Bouttes, A. N.
LeGrande, F. Lhardy, G. Lohmann, P. A.
Morozova, R. Ohgaito, A. Quiquet, D. M.
Roche, X. Shi, A. Schmittner, J. E. Tierney,
and E. Volodin: The PMIP4-CMIP6 Last Glacial
Maximum experiments: preliminary results and
comparison with the PMIP3-CMIP5 simulations,
in press in Clim. Past </span> | <a
href="https://cp.copernicus.org/preprints/cp-2019-169/"
style="color:#0011ff" target="_blank">online</a>. </li> </ul>
</section>
<hr />
<!-- Footer -->
<section id="two" class="wrapper style1"> <div
class="container"> <footer id="footer"> <div
class="container"> <ul class="icons">
<li><a
href="https://scholar.google.com/citations?user=wOx3vCcAAAAJ&hl=en"
target="_blank" class="image"><img
src="images/logos/google_scholar_logo.png"
alt="GitHub" style="width:100px;height:100px;" /></a></li>
<li><a
href="https://github.com/lofverstrom"
target="_blank" class="image"><img
src="images/logos/Octocat.png"
alt="GitHub" style="width:100px;height:100px;" /></a></li>
<li><a
href="https://www.climatesystemscenter.org/"
target="_blank" class="image "><img
src="images/logos/CSC_Logomark_Color.png"
alt="CSC" style="width:100px;height:100px;" /></a></li>
<li><a
href="https://www.overleaf.com?r=27c608f6&rm=d&rs=b"
target="_blank" class="image "><img
src="images/logos/overleaf.png"
alt="CSC" style="width:100px;height:100px;" /></a></li>
<!-- <li><a
<!-- href="https://www.python.org/"
<!-- target="_blank"
<!-- class="image "><img
<!-- src="images/logos/python_logo.png"
<!-- alt="CSC" style="width:150px;height:100px;" /></a></li>
<li><a
href="https://www.geo.arizona.edu/"
target="_blank" class="image "><img
src="images/logos/UA.jpg" alt="CSC"
style="width:100px;height:100px;" /></a></li> -->
</ul> <ul class="copyright"> <li>© Marcus Lofverstrom, 2021</li>
<!-- <li>Design: <a href="http://templated.co">TEMPLATED</a></li> -->
</ul> </div> </footer> </div> </section>
<!-- Scripts -->
<script src="assets/js/jquery.min.js"></script>
<script src="assets/js/skel.min.js"></script>
<script src="assets/js/util.js"></script>
<script src="assets/js/main.js"></script>
</body> </html>